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Plan

1. Fundamentals: background, basic knowledges, illustrative examples (presented by Jianwen Xie)
2. Advanced: present advanced methods, explain key ideas and equations (presented by Ying Nian Wu)
3. Applications: applications of 1 and 2. (presented by Jianwen Xie and Ying Nian Wu)

Disclaimer:
References are not comprehensive or complete. Please refer to our papers for more references.
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Part I: Fundamentals

1. Background
. Probabilistic models of images
. Gibbs distribution in statistical physics
. Filters, Random Fields and Maximum Entropy (FRAME) models

. Generative ConvNet: EBM parameterized by modern neural network

2. Elements of Energy-Based Generative Learning
Understanding Kullback-Leibler divergences
. Maximum likelihood learning, analysis by synthesis
Gradient-based MCMC and Langevin sampling
. Adversarial self-critic interpretations
Short-run MCMC for synthesis for EBMs

. Equivalence between EBMs and discriminative models
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Probabilistic Models of Images
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Gibbs Distribution in Statistical Physics
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Energy-based model originates from the Gibbs distribution in statistical physics:

x is the state of a system (e.g., ferromagnetic substance, a cup of water, gas...).

E(x) is the energy of the system at state x.

T is the temperature. As T — 0, p(x) focuses on the global minima of E (x).

Z is the normalizing constant, or partition function, to make p(x) a probability density.
The partition function is ubiquitous in statistics physics (also quantum physics).

States of low energies have high probabilities
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Energy-Based Model (EMB)

po(x) = Z%ﬁ) exp(fo(z)) Z(0) = / exp(fo(z))da

In this tutorial, we present energy-based model (EBM):

X is an image (or video, text, etc.)

—E (x)/T will be parametrized by modern ConvNet fy(x) , where 8 denotes the parameters.
fo(x) captures regularities, rules, organizations and constraints probabilistically.

In conditional settings, fg(x) acts as soft objective function, cost function, value function, or critic.

It actually is a softmax probability, recall in classification, for a category c, with logit score f(c),

exp(f(c))
> exp(f(c))

Here we assign score fp(x) to each x, and softmax over all x (as if each x is a category).

Pr(c) =  exp(f(c)) =
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FRAME (Filters, Random field, And Maximum Entropy)

1 k I denotes the image

po(I) = m exp ; :; Orh({I, Br,z)) | q(I) x: pixel, position; D: domain of x

By x is Gabor filter of type (scale/orientation) k at position x

InputImage of (I, Bk,x> is filter response

a circle

h(): non-linear rectification

q(I): reference distribution (e.g., uniform or Gaussian noise)

Markov random field, Gibbs distribution

== --- Maximum entropy distribution

Exponential family model

The outputcircle as seenwhen pass
through individual Gabor filter

Original image, Gabor filters, filtered images (taken from internet) One convolutional Iayer (given)

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. 1JCV, 1998.
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FRAME (Filters, Random field, and Maximum Entropy)

1 k

pe(l) = 7(0) =P > D 0h({L, Ba))| a(D)

k=1xeD

For each pair of texture images, the image on the left is the observed image, and the image on the
right is the image randomly sampled from the model.

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. 1JCV, 1998.
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GRADE (Gibbs Reaction And Diffusion Equation)

" Pgee”" i
P fol) =3 > 0uh({L Bi.s))
.'........o k=1z€D

(fy
. . A
Langevin dynamics T,, A, = I, + ?tvlfe (L) + V Atey e; ~ N(0,1)

gradient ascent + diffusion (Brownian motion)
At corresponds to step size in implementation

[1] Song-Chun Zhu, and David Mumford. Grade: Gibbs reaction and diffusion equations. ICCV 1998
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Inhomogeneous FRAME Model

The inhomogeneous FRAME model [1,2,3] for object patterns

229) °xp Z Z Ok, h((I, Br,z)) | q(I)

k=1zeD

po(I) =

HMC Synthesis from the inhomogeneous FRAME model

k
foD) =3 3 buah({L Br)) a® exp |~ TP

k=1xzeD

Analysis by synthesis: (use HMC to sample synthesized images)

) 1 n 1 n ~
Ot = 000, + i | = > h({T, Bra)) = = (L, Bi))
i=1 =1

more examples

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. Inducing Wavelets into Random Fields via Generative Boosting. Journal of Applied and Computational Harmonic
Analysis (ACHA) 2015

[2] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Sparse FRAME Models for Natural Image Patterns. International Journal of Computer Vision (1JCV) 2014
[3] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Inhomogeneous FRAME Models for Object Patterns. (CVPR) 2014
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FRAME Model with VGG Filters

VGG convolutional layer (given), one fully connected layer (learned) Synthesis by Langevin dynamics

[1] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. AAAI 2016
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EBM Parameterized by Modern Neural Network

Let x be an image defined on image domain D, the Generative ConvNet is a probability distribution defined on
image domain

1
)= ex x T
() = 57 XP(fola))a(x)
where q(x) is a reference distribution, e.g., uniform or Gaussian distribution ¢(z) = ﬁ exp (—2%”33”2)
(2mo?) a

e Z(8) is the normalizing constant Z(Q)Z/GXP(fB(ﬁ?))Q(w)dw

fo(x) is parameterized by a ConvNet structure that maps the input image to a scalar. 8 contains all the

parameters of the ConvNet.

L1

<" feature maps

input RGB image { .+ sub-sampled

nd o
feature maps 2™ layer

&

1% layer

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

Jianwen Xie, Ying Nian Wu
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Kullback-Leibler Divergences in Two Directions

For two probability densities p(x) and g(x), the Kullback-Leibler Divergence (KL-divergence) is defined

Dk (pllg) = E, llog %} = / p(z)log S Eg dzx

The KL-divergence appears in two scenarios:

(1) Maximum likelihood estimation: Suppose there are training examples x;~pqata(x) and we want to learn a
model pg (x). The log-likelihood function is

1 n
L(0) = — ¥ logps (2;) = Epy,,. [logpe(z)
n
1=1
Thus, for a large n, maximizing the log-likelihood is equivalent to minimizing the KL-divergence

DKL (Pdata [|[Pe) = — entropy (pdata ) — Epga,. [logpe(z)] = — entropy (pdata ) — L(0)

Jianwen Xie, Ying Nian Wu
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Kullback-Leibler Divergences in Two Directions

(2) Variational approximation: Suppose there is a target distribution piarger and we know pearger UP to a
normalizing constant, e.g.,

1

pta,rget(x) . E eXp(f(:E))

where f(x) is known but Z = | exp(f(x))dx is analytically intractable.

Suppose we want to approximate it by a distribution q4. We can find ¢ by minimizing

DKL (Q¢||ptarget ) — Eq¢ [log Qd)(x)] . qub [f(.’l?)] - log Z

The above minimization does not require knowledge of log Z.
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Kullback-Leibler Divergences in Two Directions

The behaviors of Dky, (Paata ||pe) in scenario (1) and Dy, (g4 ||Prarget ) in scenario (2) are different.

In (1), pg tends to cover all the modes of pgaa, While in (2) g4 tends to focus on some major modes of Pearget
while ignoring the minor modes.

do

Pdata
be Ptarget

N

]D)KL (Q¢ Hptarget )
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Maximum Likelihood Estimation

Observed data {xl,

Model: pg(x) =

Z(0)

; xn} ~ pdata(x)

L exp(fo())

2(6) = [ exp(fo(z))da

Objective function of MLE learning is

L(G Z lngg (xz)

The gradient of the log-

= %;V(afe(iﬂi) —

Jianwen Xie, Ying Nian Wu

likelihood is

Epo () (Vo fo(z)]

Derivation of gradient of the log-likelihood:
Vologpe(x) = Vo fo(x) — Vglog Z(0)

where the term Vylog Z(6)can be rewritten as

Vo log Z(0) = %vgzw)

_ %g)vg / exp(f3(2))da

— L/exp(fe(-313))'719.7019(@dﬁc

YA
:fZ%B) exp(fo(z))Ve fo(x)dx

Epo(2)[Vofo(z)]
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Maximum Likelihood Estimation

Given a set of observed images {-731, ey l'n} ~ pdata(x)

Zpe(fl?)vefe(fﬁ)

Gradient of MLE learning

e.g., x is a 100x100 grey-scale image
L'(0) = Epyra(2)[VoSo(@)] = Epy ) [Vo fo(2)] oo bixel ~ 0, 2551
N 1 i Vof (.’L’) B l i Vo fo (5:) Image space is 256 10000 |
n i1 0O n i—1 ’ Intractable!!

Approximated by MCMC {5317 ooy féﬁ} ~ Po (QL‘)

The expectation is analytically intractable and has to be approximated by Markov chain Monte Carlo (MCMC),

such as Langevin dynamics or Hamiltonian Monte Carlo (HMC).

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Gradient-Based MCMC and Langevin Dynamics

1
For high dimensional data x, sampling from distribution pg (x) = Z(9) eXp(fg (:C)) requires MCMC, such as
Langevin dynamics
At
Ti+At = Tt + 7V$f9(a:t) + vV Atey er ~ N(0,1)
Gradient ascent Brownian motion

As At — 0 and t — oo, the distribution of x; converges to pg (x).
At corresponds to step size in implementation.

Different implementations of the synthesis step:
(i) Persistent chain: runs a finite-step MCMC from the synthesized examples generated from the previous epoch.
(ii) Contrastive divergence: runs a finite-step MCMC from the observed examples.

(iii) Non-persistent short-run MCMC: runs a finite-step MCMC from Gaussian white noise.
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Analysis by Synthesis

Input: training images {Z1,...,Zn} ~ Pdata()

Output: model parameters @

Fort=1to N observed statistics synthesized statistics

synthesis step: {571, anky ff)ﬁ} ~ Do, (CL‘)

Z Vofo(Z

SII*—‘

1 mn
analysis step: 9t-|—1 = Gt + Mt E Z v9f9 (:C%) T
=1

End

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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Adversarial Interpretation

The update of @ is based on

' 9) ~ %th?fé'(mi) — %ZIVQfg(:EZ
=1 1=
1 o 1o~
= Vo g L ol =5 2 fol@

where {591, 6ty a"cn}are the synthesized images generated by the Langevin dynamics

|
«  Defi lue functi E S E
efine a value function V' ({%;},0) = fo(x;) 72 fo(Z;)

The learning and sampling steps play a minimax game min max V({LIJ@} 9)
See Part 2 for adversarial contrastive divergence {z;} 6

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet. CVPR, 2017
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Mode Seeking and Mode Shifting

Mode seeking and mode shifting

true model x observed data

—— learned model o synthesized data

4 F@4 /X\
—
X

- - .
(1) mode seartc'l‘\;r‘lé o IW
fx4 f4
SN/
2000000¢ Q0000 > . X0 : X
(2) mode shifting (4) mode matching
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Short-Run MCMC for EBM

1
Z(9)

. At
MCMC (Generation): 7, , A, = x; + 7me9(£vt) + V Atey

Model (Representation): pg (x) — eXp(fg (35')) A short-run MCMC: Let My be the transition

kernel of K steps of MCMC toward pg(x).
For a fixed initial probability p,, the resulting
marginal distribution of sample x after

VeL(0) = Epdata(m)[vefg( z)] = H_‘Epe(m)[ngg(x)] running K steps of MCMC starting from p,, is

~ S Velsl@) - = S Vadol) denoted by
40(%) = Mepo(z) = / po(2) Mo (z]2)dz

Z~Po
x = Mpy(z,e)
Synthe5|s by short-run MCMC We can write x = My(z), where we fix e = (e),

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

Training 8 with short-run MCMC is no longer a maximum likelihood estimator (MLE) but a moment matching

estimator (MME) that solves the following estimating equation:

Epgaa [Vﬁ’f@ (3")] = Eqg, [VBfﬁ’ (QL’)]
|

which is a perturbation of the maximum likelihood estimating equation.

» Not pg(x) !

Part 2 will present methods to improve sampling and reduce bias due to perturbation, or to avoid sampling.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

Consider a simple model where we only learn top layer weight parameters:

* The blue curve illustrates the model distributions

corresponding to different values of parameter.

© = {po(z) = exp((0, h(x)))/Z(0), 0}

e The black curve illustrates all the distributions that

match pgata (black dot) in terms of E[h(x)]

Q= {p:Ep[h(z)] = Epyor [P(2)]}

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC as a Generator Model

Interpolation by short-run MCMC resembling a generator or flow model: The transition depicts the sequence Mg(Zp) with
interpolated noise z, = pz; + /1 — p? z; where p € [0,1] on CelebA (64X64). Left: My(z,) . Right: Mg(z;).

KRR ETRERE R
EEEEENENNEN:

Reconstruction by short-run MCMC resembling a generator or flow model: min||x — My(2)||2. The transition depicts My (z;) over
zZ

time t from random initialization ¢ = 0 to reconstruction t = 200 on CelebA (64%x64). Left: Random initialization. Right: Observed
examples.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurlPS, 2019
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Part I: Fundamentals

1. Background
. Probabilistic models of images
. Gibbs distribution in statistical physics
. Filters, Random Fields and Maximum Entropy (FRAME) models

. Generative ConvNet: EBM parameterized by modern neural network

2. Elements of Energy-Based Generative Learning
Understanding Kullback-Leibler divergences
. Maximum likelihood learning, analysis by synthesis
Gradient-based MCMC and Langevin sampling
. Adversarial self-critic interpretations
Short-run MCMC for synthesis for EBMs

. Equivalence between EBMs and discriminative models
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Equivalence between EBM and Discriminative Model

Discriminative model

Let x be an image, and y be a label or annotation of x. Suppose there are C categories. The soft-max classifier is

la) = exp(fc,t?(w))
poly=clo) = o @)

where f. o is a deep network, and 6 denotes all the weight and bias parameters. For different c, the networks f, o
may share a common body and only differ in head layer.

The model can be rewritten as

1 c
poly=clx)= Zo(o) P (feo(z)) where Zp(z) = exp(feo())
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Equivalence between EBM and Discriminative Model

The discriminative model can be learned by maximum likelihood. The log-likelihood is the average of

logpo(y | ) = fy.e(x) —log Zp(x)
The gradient of log pg (¥|x) with respect to 8 is
Vologpo(y | ) = Vo fyo(x) — Ep,yz) [Vafye(z)]
where Vg log ZB( ) Epe(mw) [vﬂfy 9( )]

(y!fc)]

The MLE minimizes Dk, (p(y | )||q(y | z)) = Ep(m y) {log (v 2)

A special case is binary classification, where y € {0,1}. It is usually assumed that f, g (x) = 0, f1 g (x) = fy(x), so

that
ply=1|x)= T o z—fg(x)) = sigmoid (fy(x))
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Equivalence between EBM and Discriminative Model

EBM < discriminative model

A more general version of EBM is of the form of exponential tilting of a reference distribution

po(x) = Zig exp (fo()) 4(z)

where g(x) is a given reference measure, such as uniform measure or Gaussian white noise distribution.

We can treat pg as the positive distribution, and g(x) the negative distribution.
Let y € {0,1}, and the prior probability p(y = 1) = p,sothat p(y = 0) =1 — p.

Let p(x|y = 1) = pg(x), p(x|y = 0) = q(x).

ex x)+b
Following the Bayesrule, p(y = 1| z) = Tr é)x(pf?j(”g()a:) —|—)b) where § =log(p/(1 — p)) — log Zy

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Equivalence between EBM and Discriminative Model

More generally, suppose we have C categories, and

1

pc,@(x) — Eexp (fC,G(x))Q(:B)aC . ]-a .. °aC:

suppose the prior probability for category c is p., then

_ __ exp(fep(®) +be)

ply=clz) = C

ZC:]_ eXp (fc,@(x) + bc)

Conversely, if p(y = c|x) is of the form soft-max classifier, then p, g (x) is of the form of exponential titling based on
the logit score f; g (x) + b,.

where b, = logp. —logZ .

EBM is a generative classifier which can be learned from unlabeled data.

Introspective learning: sequential discriminative learning of EBM.

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
[2] Lazarow, Justin, Long Jin, and Zhuowen Tu. Introspective neural networks for generative modeling. ICCV. 2017
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Multistage Coarse-to-Fine Expanding and Sampling

1 Approach | Models | FID
VAE | VAE (Kingma & Welling, 2014) | 78.41
p9 a: eXp 9 x Aut . PixelCNN (Van den Oord et al., 2016) 65.93
Z: (9) UIOTCETESSIVE | pixelIQN (Ostrovski et al., 2018) 49.46
WGAN-GP (Gulrajani et al., 2017) 36.40
GAN SN-GAN (Miyato et al., 2018) 21.70
. ) . ) R StyleGAN2-ADA (Karras et al., 2020) 2.92

Uu!'fls'rrr_'_w J’,F‘ﬂi'u“l“_‘ Smooth .\mn.m'm; f(x)
‘ of(®) o Glow (Kingma & Dhariwal, 2018) 45.99
Flow Residual Flow (Chen et al., 2019a) 46.37
T ) | l Contrastive Flow (Gao et al., 2020) 37.30

noise
| . MDSM (Li et al., 2020) 30.93
Gxg T | : > Score-based | NCSN (Song & Ermon, 2019) 25.32
x@ Stage 1 g | ¥ 3 NCK-SVGD (Chang et al., 2020) 21.95
. L $ Bl @ mIls S Short-run EBM (Nijkamp et al, 2019) | 44.50
x(2) Stage 2 Lor Multi-grid (Gao et al., 2018) 40.01
32x32 ! Wi-# 32x32 EBM EBM (ensemble) (Du & Mordatch, 2019) | 38.20
NO) Stage 3 ;»@- —————————— 4 | CoopNets (Xic_ct al., 2018b) 33.61
x(3) EBM+VAE (Xie et al., 2021d) 39.01
CF-EBM 16.71
(a) (b)

* Training: incrementally grow the EBM from a low resolution (coarse model) to a high resolution (fine model)
by gradually adding new layers to the energy function.

* Testing: keep the EBM at the highest resolution for image generation using the short-run MCMC sampling.

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.
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Multistage Coarse-to-Fine Expanding and Sampling

CMC generative sequences on CelebA (50 Langevin steps)

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Multi-Grid Modeling and Sampling

Y3
Y2
Yo Y
‘79 f
Ix1 4x4
Stagel: generate Y; from Yo 1ox16 64x64

Stage2: generate Y; from Y,

T
Stage3: generate Y; from Y,

* Learning models at multiple resolutions (grids)

* Initialize MCMC sampling of higher resolution model from images sampled from lower resolution model
* The lowest resolution is 1x1. The model is histogram

[1] Ruigi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Multi-Grid Modeling and Sampling

Image generation Inpainting

el oL
& l] ..H. Z mm[! BB
} '1(." Jw 5 N

r"

i
AN ) o Al’__-: y b,
T -..'lu M'n-vt5mkr~n- .

q N ml"# ? % ‘Q *’-@ Feature learning: EBM as a generative classifier

nl’ \' i, |4 IS Test error rate with # of labeled images | 1,000 2,000 4,000
. 3 | DGN 36.02 - -
a1 : -
'1 "‘."1 o ‘ Virtual adversarial 24.63 - -
,‘" 3J‘.. wq P{_‘ y Auxiliary deep generative model 22.86 - -
3 ":m P | e B P Supervised CNN with the same structure | 39.04 2226 15.24
=l —d dalvsl R sl Multi-grid CD + CNN classifier 19.73 15.86 12.71

[1] Ruigi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Diffusion-Based Modeling and Sampling

(Xt 1|Xt
e - SO

~
““-l—_--

Q(xtlxt 1

Ty =Ti—1+ 06 — q(T¢|Ti-1)

po(Ts) = m exp(fo(xt,t))

1

pa(fﬁt—1|$t) X €Xp fa(ﬂit—l) - ant - fEt—1||2

Conditional distribution is easier to sample from than marginal

* Close to unimodal around x;
* Denoising, recall x;_; with hint x;

[1] Ruigi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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Diffusion-Based Modeling and Sampling

Diffusion recovery likelihood: SOTA synthesized results for pure EBMs.

Table 1: FID and inception scores on CIFAR-10.

Model FID| Inceptiont
GAN-based

WGAN-GP (Gulrajani et al., 2017) 36.4 7.86 +.07
SNGAN (Miyato et al., 2018) 21.7 822+ .05

SNGAN-DDLS (Che et al., 2020) 1542 9.09 +.10
StyleGAN2-ADA (Karras et al., 2020) 3.26 9.74 £+ .05

Score-based

NCSN (Song & Ermon, 2019) 2532 8.87+.12
NCSN-v2 (Song & Ermon, 2020) 31.75 -
DDPM (Ho et al., 2020) 317 946+ .11
Explicit EBM-conditional

CoopNets (Xie et al., 2019) - 7.30
EBM-IG (Du & Mordatch, 2019) 379 8.30
JEM (Grathwohl et al., 2019) 384 8.76
Explicit EBM

CoopNets (Xie et al., 2016a) 33.61 6.55
EBM-SR (Nijkamp et al., 2019b) - 6.21

EBM-IG (Du & Mordatch, 2019 38.2 6.78
Ours (76) 9.60 8.58 £.12

[1] Ruigi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021
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Diffusion-Based Modeling and Sampling

[1] Ruigi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Generator as Approximated Sampler of EBM

Top-down mapping Bottom-up mapping D2 updating
hidden vector z energy — fo(x)
(X 1 D1 Langevin
example x ~ g¢(z) example x | synthesized examples '—)
(a) Generator model (b) Energy-based model | ~ "TTTTTTTTTTTTTTTTT

[ observed examples Ji
Energy-based model

. Bottom-up network; scalar function, objective/cost/value, critic/teacher

. Easy to specify, hard to sample G2 updating
. Strong approximation to data density

Generator model

. Top-down network; vector-valued function, sampler/policy, actor/student — inferred latent factors |
. Direct ancestral sampling, implicit marginal density G1 Langevin
*  Manifold principle (dimension reduction), plus Gaussian white noise ( observed examples J

. May not approximate data density as well as EBM

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generator Model

2z ~ N(0,1)
r = gg(z) + €

x: high-dimensional example;

z: low-dimensional latent vector (thought vector, code), follows a simple prior

* g:generation, decoder

€: additive Gaussian white noise

Manifold principle: high-dimensional data lie close to a low-dimensional manifold

Embedding: linear interpolation and simple arithmetic

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generator Model

Model & Y N(O, I)
T = gp(z) + €

Conditional Po (xlz) — N(gg (Z), 021)

Joint p@(gja Z) - p(Z)pg(:U|Z)
1 o 1
log (2, 2) = =3 1z — ga(2)” — SIP + constant

Marginal po(x) = fp9($,z)dz

Posterior po(z|x) = po(z, v)/po(x)

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Maximum Likelihood Learning of Generator Model

Log-likelihood L (6) = Z log pg(x;)

1
Gradient Vologpg(z) = ——Vope(z)

po(z)

= Iﬁng/pg(iE,Z)dZ
= 1:1;) /pg(:c,z)VQIngg(x,z)dz

po(x, z)
_/ 15() Vologpe(z, z)dz

= /P9(2|$)V6 log pg(x, 2)dz

= Epy (212)[Vo log p(z, 2)]

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Maximum Likelihood Learning of Generator Model

Log-likelihood  [,(§) = L Zlogpe(zvi)
n 1=1
Gradient Vg log pg(z) = Ep, (212)[Ve log p(z, 2)]

e |

1
log po(x, 2) = 5.2

Langevin inference

2 1, 19
At |z — gg(2)||” — =||2]|* + constant
ZtHAt — 2t + 7Vz logpg(zt|:v) + Vv Atet 2

1

V. logpy(z|r) = —5 (¢ — g0(2)) Vag0(2) 2 Vologps(z,2) = 75 (= = 96(2)) Voge(z)

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Two Generative Models

Generator density: implicit integral

po(a) = [ ple)po(alz)dz
EBM density: explicit, unnormalized

1
") = 7@

exp(fa())

Data density pdata(:c)

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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Cooperative Learning via MCMC Teaching

Generator Pg EBM Ty

Generator is student, EBM is teacher

Generator generates initial draft, EBM refines it by Langevin

EBM learns from data as usual

Generator learns from EBM revision with known z: MCMC teaching

Avoid (left) or simplify (right) inference

Generator amortizes EBM’s MCMC and jumpstarts EBM’s MCMC

EMB’s MCMC refinement serves as temporal difference teaching of generator

Vs GAN: an extra refinement process guided by EBM

6
G2 updating

Generator

[ observed examples Ji

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Jianwen Xie, Ying Nian Wu

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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Theoretical Underpinning

g Markov M ection
transitio

Learning EBM by modified contrastive divergence Dk, (pdata || 7Ta) -_ DKL(Ma(t)pg(t) || ﬂ‘a)

Learning generator by MCMC teaching D1, (Ma(t)pg(t) || pe)

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Image Modeling

}

interpolation by the learned generator

scene synthesis image inpainting

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Cooperative Learning via Variational MCMC Teaching

* To retrieve the latent variable of {X;} provided by EBM in cooperative learning, a tractable
approximate inference network q,, (z|x) can used to infer {Z;} instead of using MCMC inference.

Then the learning of q,,(z|x) and pg (x|z) forms a VAE that treats {X;} as training examples.

* Variational MCMC teaching of the inference and generator networks is a minimization of

variational lower bound of the negative log likelihood

L(0,¢) = Z log pe(Z:) — YDKL(qy(2i|Z:)||po(2i]Z:))]

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Cooperative Learning via Variational MCMC Teaching

. . 6l y . N
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Fast MCMC Teaching MCMC Teaching Variational MCMC Teaching
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Cooperative Learning via Variational MCMC Teaching

Image synthesis
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[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Divergence Triangle (without MCMC)

* Integration of variational and adversarial learning
* Generator: variational auto-encoder with an encoder as inference model
* EBM: adversarial contrastive divergence

* Three KL-divergences form a triangle

[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and

inference model. CVPR 2019
[2] Tian Han, Erik Nijkamp, Lingi Zhou, Bo Pang, Song-Chun Zhu, Ying Nian Wu. Joint training of variational auto-encoder and latent energy-based model. CVPR 2020
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Variational Auto-Encoder for Generator

: : Q
Divergence perturbation pi(x)gs(z | )

* First KL - maximum likelihood

* Positively perturbed by second KL = from intractable marginal to tractable joint

* VAE: alternating projections
p(2)po(z | 2)

DxL(Pdata(Z)|lPe (7)) + DxL(ge(2]z)||lpe(2]z)) &
= DKL (Pdata(7)qs(2|7)||Po (2, 7)) = DkL(Qyl| Pa)

[1] Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014.
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Adversarial Contrastive Divergence for EBM

Divergence perturbation

* First KL > maximum likelihood

* Negative perturbed by second KL — contrastive divergence, canceling intractable log Z term, adversarial

* A more elegant form of adversarial, a chasing game, related to W-GAN and inverse reinforcement learning
* Generator as an approximate sampler of EBM, actor; EBM criticizes generator vs data, critic

min m@aX []DKL (pdata”ﬂ'cx) - ID)KL (p9 ”ﬂ-a)]

(0

Learning gradient of EBM
ValEpua (fa (7)) = Epy (fa(z))]

[1] 1an J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherijil Ozair, Aaron C. Courville, Yoshua Bengio. Generative Adversarial Nets. NIPS 2014.
[2] Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein Generative Adversarial Networks. ICML 2017.
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Divergence Triangle

Three joint distributions

Q(z, %) = pdata()ge(2|z)
P(z,x) = p(z)pe(z|2)
(2, 7) = 7o (7)qe(2|T)

* Learning gradients are all tractable

max mgin min A(O:, 0, ¢) * VAE: P and Q running towards each other
@ ¢ * ACD: P running towards Q, while P chasing P

A = DKL(Q”P) + DKL(P”H) o DKL(Q”H) * Learn EBM without MCMC

e Learn VAE with better synthesis, regularized by EBM

[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and
inference model. CVPR 2019.

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Image Generation and Interpolation

[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and
inference model. CVPR 2019.

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Latent Space Energy-Based Prior Model

x: observed example. z: latent vector.
Jal2

po(T,2) = pa(2)ps(|2) t
| Z

pa(2) = s xplUa()p0lc) §95(
x =gp(z) +e X

* EBM defined on z, standing on a top-down generator.

* Exponential tilting of py(2), p, is non-informative isotropic Gaussian or uniform prior.

* Empirical Bayes: learning prior from data

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Learning by Maximum Likelihood

Log-likelihood n fOé (Z)
L(6) =) logpy(z;) t
=1

Gradient for a training example ' gB (Z

Vi Ingg( ) IIEE’pg(z|w) [V@ 10gp9 (:E Z)]
= Ep, (212) [Vo(log pa(2) + log ps(2z|2))]

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Learning by Maximum Likelihood

* Learning EBM prior: matching prior and aggregated posterior

da(z) = Vo log pg(z) fOé(Z)
= Epe(zla:) [Vafa(z)] — Epa(z) [Vafa(z)] L]

* Learning generator: reconstruction l g)B (Z)

6g(x) = Vglogpg(x) T
= Epy(210) [V 5 log ps(z|2)]

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Prior and Posterior Sampling

Langevin dynamics

2o ~ po(2)
At fa(2)

Zt+ At — <t + 7Vz log ﬂ'(Zt) + VvV Atet t

<
e zislow-dimensional lgl@(Z)
e

* Sampling is efficient and mixes well

* Short-run MCMC for inference and synthesis (e.g., K = 20)

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Learning and Sampling Algorithm

fort=0:7T—1do

1. Mini-batch: Sample observed examples {x; } ;.

2. Prior sampling: For each z;, sample z; ~ pq,(2) by Langevin sampling from target distribution
m(2) = pa,(2), and s = so, K = Ko.

3. Posterior sampling: For each x;, sample z,j' ~ Do, (z|x;) by Langevin sampling from target
distribution 7(z) = pe, (2|xi), and s = s1, K = K.

4. Learning prior model: a1 = oz + 1m0~ > 1w [Vafa: (27) — Vafa, (27)]

5. Learning generation model: 3:11 = 8: + mi— >, Vg logpg, (z:|2).

Have been applied to (1) image generation, (2) text generation, (3) molecule generation,

(4) trajectory prediction, (5) semi-supervised learning with information bottleneck. See part 3.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Amortizing MCMC Sampling

Divergence perturbation framework

fa(2)

A0, ¢,v) = Dk (pdata(z)|lpo(z)) 1
+ Dk1.(g4(2|7)||po(2|7)) — Dkr(gy (2)[|pa(2)) <

o Cl 98(2)
min m(;n mgx A0, P, 1)) T

* Positive phase: posterior sampler, inference model, generalizing variational auto-encoder
* Negative phase: prior sampler, adversarial contrastive divergence, prior MCMC sampling is fast

* Short-run MCMC as approximated sampler

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Image Generation

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Image Generation

Models VAE 2sVAE RAE SRI SRI (L.=5) Ours
syuy  MSE 0019 0.019 0.014 0.018 0.011 0.008
FID 46.78 42.81 40.02 44.86 35.23 29.44

MSE  0.057 0.056 0.027 ] ] 0.020

CIFAR-10  pry 10637 109.77 74.16 ] ] 70.15
Coleba  MSE  0.021 0.021 0.018 0.020 0.015 0.013
cle FID 65.75 49.70 40.95 61.03 47.95 37.87

Table 1: MSE of testing reconstructions and FID of generated samples for SVHN (32 x 32 x 3), CIFAR-10
(32 x 32 x 3), and CelebA (64 x 64 x 3) datasets.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Short-Run MCMC
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[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Long-Run MCMC
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[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks

. Generative cooperative network
. Divergence triangle
. Flow contrastive estimation of energy-based model
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Noise Contrastive Estimation of EBM

1
Z(0)

The energy-based model (EBM) is defined as:  pg(x) = exp|fo(z)]

Po (:I:) = exp [fg (x) = C] ,c = log Z(G) c is now treated as another free parameter to learn.

6 can be estimated by maximizing the following objective function:

learning by contrast

J(0) = Epgsa [log #%] + Eq [10g % EBM as a generative classifier

* The first term relies on observed training examples {x;,i = 1, ...,n}from data distribution.

* The second term relies on the generated examples {X;,i = 1, ...,n} from a noise distribution q(x).

[1] Michael Gutmann, Aapo Hyvarinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. AISTATS, 2010
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Noise Contrastive Estimation of EBM

J(0) =E,,... [log p—g(%f;(m)] + E, [log p—g(g)(ﬂi,(x) (1)

The objective function of NCE connects to logistic regression in supervised learning.

Suppose for each training or generated examples, we assign a binary class label y:

e y = 1ifxisfrom training dataset

* y = 0ifxisgenerated from q(x).

Equal probabilities for two class labels are assumed: p(y = 1) = p(y = 0) = 0.5, we have
pe(x)

pe(r) +q(z)

po(y =1|z) = = u(z,0)

The log-likelihood of logistic regression is given by

1(0) = Z log u(z;; 0) + Z]og(l —u(2;;0)) an approximation of Eq (1)
i=1 i=1

NCE turns MLE to a discriminative problem by introducing a noise distribution q(x)

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Flow-Based Model

Flow-Based Model: T = Qa(Z)S 2~ qo(z)

qo is @ known Gaussian noise distribution. g, is an invertible transformations where the log determinants of the

lacobians of the transformations can be explicitly obtained.

* Under the change of variables, distribution of x can be expressed as

Ga() = qo(9 " ()] det(dg, " (z)/0w)]

* In the flow-based model, g, is composed of a sequence of transformations g,=gq, © ga, °- ° Ja,,- The

relation between z and x can be writtenasz < h; < -+ h,_; < x.

4o () = qo(g; " (@) | det(Dhi_1 /Oh;)|

* The flow-based model chooses transformations g whose Jacobian is a triangle matrix, so that the

computation of determinant becomes | det(0h,;_1/0h;)| = ll|diag(Oh;_1/0h;)]

[1] Diederik P. Kingma, Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. NeurIPS 2018.
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EBM vs Flow-Based Model

Energy-based models:

O Pros: (1) free choice of energy function, can be any CNN structure; (2) direct correspondence to
discriminator by Bayes rule.

O Cons: MLE learning requires sampling from model with expensive MCMC.

Flow-based models:

O Pros: (1) exact likelihood expression (2) direct generation via ancestral sampling

U Cons: unnatural and carefully designed transformations; less flexible and hard to extract features.

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Choice of Noisein NCE

_ po () q(z)
T(0) = Epyn 108 5558807 | + Ea 108 ety

The choice of g(x) is a design issue, we expect it to satisfy:
(1) analytically tractable expression of normalized density;
(2) easyto draw samples from;

(3) close to data distribution.

If g(x) is not close to the data distribution, the classification problem would be too easy and would not require

pe to learn much about the modality of the data.

A flow model can be used to transform the noise so that the distribution is closer to data. Flow-based models
satisfy (1) and (2).

We can also replace flow-based model by VAE, which satisfies (1) approximately.

Jianwen Xie, Ying Nian Wu
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Flow Contrastive Estimation of EBM

Joint training of EBM and flow model:

* lteratively train flow g and EBM p, so that flow can be a stronger contrast for EBM.

* The learning scheme is similar to GAN, where p(x)(EBM) and q(x) (flow) are playing a mini-max game with a

unified value function

log py(z) Ga (9o (2))

minmaxV(0,a) =E,_... po(z) + C]a(ﬁf?)] +E, [log 10 (9a(2)) + qa (9a(2))

fa" 7]

where E is approximated by averaging over observed samples {x;,i = 1,..,n}, while E; is

Pdata

approximated by averaging over negative samples {X;,i = 1,...,n}drawn from q,(x), with z; ~ q¢(2).

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.
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Flow Contrastive Estimation of EBM

Interpretation of the objective function

po() o (9a(2))
po(T) + qa(m] = [I‘)g 10 (9a(2)) + da (9a(2))

* max py: noise contrastive estimation for py: EBM.

min max V(0,a) =E,,.. |log

* min q,: minimization of Jensen-Shannon divergence for q,: flow

o Ifpis close to data distribution, g is approximately minimizing

J5D (Qadeata) = KL (pdataH (pdata + qa) /2) + KL (Qa H (pdata + qa) /2)

o The learning gradient approximately follows

Epaie 108 (P9 + qa) /2)] + KL (gall (Po + ga) /2)

N J N J
Y Y
weighted MLE weighted reverse KL
(model covering) (model chasing)

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Jianwen Xie, Ying Nian Wu
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Flow Contrastive Estimation of EBM

Interpretation of the objective function

O In GAN, the discriminator D and generator G play a minimax game

min max V(G, D) = > log[D (z;)] + ) log[l — D (G (2))]
i=1 i=1

D is learning a likelihood ration  Pdata (33)/ (pdata (LL‘) + pG(SU))

O In flow contrastive estimation of EBM, the ratio is explicitly modeled by p and g:

po () DA Go (9o (21))
mln max V(d,a) = Zlog L’Je @) + 4o (333)] +E., vi {Zl g L’G (e () + Go (90 (zﬁ))} }

=1 i=1

U g as an actor (policy), p as critic (value).

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Image Synthesis

 Better synthesized results for flow; better test log-likelihood

i 7 »y
| G LR St

MLE learning Joint training MLE learning Joint training
SVHN Cifar-10
FID score
Method SVHN CIFAR-10  CelebA
VAE [341] 57.25 78.41 38.76
DCGAN [5¥] 21.40 37.70 12.50
Glow [32] 41.70 45.99 23.32
FCE (Ours) 20.19 37.30 12.21

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Jianwen Xie, Ying Nian Wu
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Semi-Supervised Classification Learning

* EBM as a generative classifier which can be learned from unlabeled data
* A probabilistic generative framework of contrastive self-supervised learning

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Jianwen Xie, Ying Nian Wu

SSL on SVHN dataset

# of labeled data

Method 500 1000
SWWAE [ /7] 23.56
Skip DGM [ 7] 16.61 (+0.24)
Auxiliary DGM [40] 22.86
GAN with FM [ 1] 18.44 (+4.8) 8.11 (£1.3)
VAT-Conv-small [ ] 6.83 (+0.24)
on Conv-small used in [ 1

FCE-init 9.42 (4+0.24) 8.50 (4+0.26)
FCE 7.05 (+0.28)  6.35 (+0.12)
IT model [~ 7] 7.05 (£0.30) 5.43 (£0.25)
VAT-Conv-large [ "] 78.98 (£0.26) 5.77 (£0.32)
Mean Teacher [0] 5.45 (£0.14) 5.21 (£0.21)
II model™ [ V] 6.83 (+0.66) 4.95 (+0.26)
Temporal ensembling™ [7] 5.12 (£0.13) 4.42 (£0.16)
on Conv-large used in [ %, 47]

FCE-init 8.86 (£0.26) 7.60 (£0.23)
FCE 6.86 (4+0.18) 5.54 (+0.18)
FCE + VAT 4.47 (£0.23) 3.87 (£0.14)

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
. Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
. Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks

. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Image Synthesis

[1] Jianwen Xie *, Yang Lu *, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML 2016
[2] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021
[3] Ruigi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021
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Image Inpainting
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One-Sided Image-to-Image Translation

p(y) o< exp(f(y))
T =y

At
Yt+rAt = Y T 7Vyf(yt) + V Ate, Yo = T ~ Pdata(T)

’fﬁﬁ&&&&&gg

~r'f,(‘,(‘,4“y<“y

6666&&@60@

] - L3 ~a i - S T S

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
. Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
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Spatial-Temporal Generative ConvNet: EBMs for Videos

Energy-based Spatial-Temporal Generative ConvNets:

The spatial-temporal generative ConvNet is an energy-based model defined on the image sequence (video), i.e.,

I ={(xt),x € D,t € T),
v po(1) = 755 exp(fo(D)a(D)

where f(I;60) is a bottom-up spatial-temporal ConvNet structure that maps the video to a scalar. g is the

Gaussian white noise model ’ .
. e
0 = e exp |5 1]

MLE update formula 6411 =0, + ¢

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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Energy-Based Video Synthesis

Generating dynamic textures with both spatial and temporal stationarity

%=’%=’ = f1;0)

spatial-temporal filters are convolutional
in both spatial and temporal domains.

For each example, the first one is the observed video, the other three are the synthesized videos.

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Energy-Based Video Synthesis

Generating dynamic textures with only temporal stationarity

N\ 70:0)

For each example, the first one is the observed video, and the other three are the synthesized videos.

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Energy-Based Inpainting

Q: Can we learn from incomplete training data?

Unsupervised recovery

A: Learning + synthesizing (new example) + recovering (training example)

Recovery algorithm involves two Langevin dynamics:
1.  One starts from white noise for synthesis to compute the gradient. (the output is I;)

2. The other starts from the occluded data to recover the missing data. (the putput is ii)
1 & 1 <&
carningstep Or1 = 00+ = > Vofo(l) = = > Vo fa(L)

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Energy-Based Inpainting

Learn the model from incomplete data
(1) Video recovery

(a) Single region masks (b) 50% missing frames (c) 50% salt and pepper masks

i £ - .l

original training recovered original training recovered original training recovered

(2) Background Inpainting

e

original training inpainted original training inpainted

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
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Energy output
0 fv:e)

Generative VoxelNet: Energy-Based Model on 3D Voxels

A

Energy-based Generative VoxelNet:
3D deep convolutional energy-based model defined on the volumetric data x

po(@) = 757 o (o@) é

where f(Y; 0) is a bottom-up 3D ConvNet structure, and q(Y) is the Gaussian

reference distribution. The MLE iterates:

At —+ vV Atet

Sampling: Ti+At = Tt + 7me9 (mt)

1

n
E Vo fo(zs) tE Vo fo(Z |
=1 3D vaxel input Y

3D input

3

Learning: Ory1 =0 + 14

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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3D Shape Generation

syn3 synd syns syn6 nnl nn2 nn3 nn4

PARLLIRAA
- *0el

chair

S QLESSLHRAGES

’ ‘ ‘ ‘ ‘ ‘ ‘ ‘ “ ‘ ‘ Model [ Inception score |
3D ShapeNets [10] 4.1261+0.193
8.658+0.450

3D GAN [17] ]
$ T * % * ? ’ * 3D VAE [79] 11.015+0.420
3D WINN [36] 8.810+0.180
Primitive GAN [34] 11.520£0.330
. . . . ‘ . , . ‘ . ‘ generative VoxelNet (ours) 11.7721+0.418
' Inception Score

RRALL2RRANRR A

Each row displays one experiment, where the first three 3D objects are observed, column 4-9
are synthesized, the last 4 are the nearest neighbors retrieved from the training set.

*TH

table

dresser

toilet

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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High Resolution 3D Generation via Multi-Grid Sampling

*  Multi-grid modeling:

A pyramid of Generative VoxelNets

A pyramid of observed examples

*  Multi-grid sampling procedure from low resolution to high resolution:

up-pooling up-pooling
up-pooling (‘\4 (\4
1x1x1 O
\ J\ ) N }
Y Y v
K steps of Langevin K steps of Langevin K steps of Langevin

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



High Resolution 3D Generation via Multi-Grid Sampling

Synthesized example at each grid is obtained by 20 steps Langevin sampling initialized from the synthesized
examples at the previous coarser grid, starting from the 1 x 1 x 1 grid.

16 X 16 < 16
16 X 16 X 16

32x32x32
32x32x32

64 % 64 < 64

128 x 128 x 128

128 X 128 X 128 64 X 64 X 64

b) sof:
(a) toilet () sein

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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3D Shape Recovery

Task: Given any corrupted 3D shape, whose indices of corrupted voxels are

i

Solution: Recover the 3D object by sampling on conditional generative VoxelNet: p(xy|xz; 0)

*Wf o”

known, recover the corruption.

where M contains indices of corruption, M are indices of uncorrupted voxels, and Xy [ X are the corrupted /

uncorrupted parts of the shape.
Learning by recovery

Sll'—‘

Z Vo fo(Z

Sampling: X~ p(xy|xg; 0)
. - 1 &
| O =00+ |~ > Vofo(wi) -
=1

Starting from the corrupted x';, run K steps of Langevin dynamics to obtain &;

(1)
Fixing the uncorrupted parts of voxels %;(#;) « x;(M;)

(2)

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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3D Shape Recovery

original
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recovered occluded original
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(d) sofa

recovered occluded original

recovered occluded original

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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3D Super Resolution

*  We perform 3D super resolution on a low-resolution 3D objects by sampling from

P(xhighlxlowi 0).
* Itis learned from fully observed training pairs {(xhigh, xlow)}. In each iteration, we first up-scale x;,,, by
expanding each voxel into ad X d X d blocks (d is the scaling ratio) of constant intensity to obtain an up-

scaled version x,’ligh of x;o, and then run Langevin dynamics staring from x,’u-gh to obtain xp;gp-

%‘Oiitttéassﬁsss
POLLe t QP TD
15" %‘\QM’“Q

(a) toilet

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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3D Shape Classification

| Method | Accuracy |
Geometry Image [57] 88.4%
. . . PANORAMA-NN [59] oT.1%
1. Train a single energy-based generative VoxelNet ECC [61] 90.0%
ies of the training set of 3D ShapeNets [10] 83.5%
model on all categories g DeepPans [58] RS
ModelNet10 dataset in an unsupervised manner. SPH [56] 79.8%
LFD [55] 79.9%
. VConv-DAE [62] 80.5%
2. Use the model (i.e., network) as a feature VoxNet [16] 93.0%
extractor and train a multinomial logistic 3D-GAN [17] 91.0%
- - 3D-WINN [36] 91.9%
regression classifier from labeled data based on Primitive GAN [34] 92.2%
generative VoxelNet (ours) 92.4%

the extracted feature vectors for classification.

A comparison of classification accuracy on the testing
data of ModelNet10 using the one-versus-all rule

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
. Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
. Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks

. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generative PointNet: EBM for Unordered Point Clouds

Energy-Based Generative PointNet:

where X = {x,k = 1,..., M} is a point cloud that contains M unordered points, and Z(0) = [ exp f3(X) po(X)

exp fo(X)po(X)

is the intractable normalizing constant. py(X) is reference gaussian distribution. fg(X) is a scoring function that

maps X to a score and is parameterized by a bottom-up input-permutation-invariant neural network.

mlp (64, 128, 256, 512, 1024) mlp (512, 256, 64) his parameterized by a multi-
64 128 256 512 1024
% o— B B ) ) 024 layer perceptron network and
—4 > | — —>] 1 = o) 256
2 = > | | > > - £ 64 & . . .
3 s T 2 8 S S g § g is a symmetric function,
il : x : o i % g X : % > — | |— —->|:|—)g
E- shared = shared 8 shared 8 shared 8 shared e v g- which is an average pooling
- A . . 5 3
S T R e W e I L B B L/ function followed by a multi-
layer perceptron network.
fol{x1, s xy}) = g{{h(x1), -, R(xm) D)

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021
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Point Cloud Generation

3D point cloud synthesis by short-run MCMC sampling from the learned model

Chair

Toilet

Bathtub

Table

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021
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Point Cloud Reconstruction

Since the short-run MCMC is not convergent, the sampled X is highly dependent to its initialization z. We can
regard the short-run MCMC procedure as a K-layer flow-based generator model, or a latent variable model
with z being the continuous latent variable: X = My(z,e), z~p,(2)

* We reconstruct X by finding z to minimize the reconstruction error L(z) = ||X — Mg (2)||?, where My (z) is a

learned short-run MCMC generator.

Ground Truth
Energy-based Generative PointNet

PointFlow

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Point Cloud Interpolation

Linear Interpolation on latent space. Reconstruction from these latent Z

— *—>

z, = (1 —p)z; + pz; , p €[0,1]

Toilet

Chair

X =My(Z)

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Point Cloud Classification

Unsupervised generative feature learning + supervised SVM learning

Results on ModelNet10

{
Max pooling
4

Robustness test

%)
<
<

[ Method | Accuracy | 9
SPH [15] 79.8% o o
LFD [4] 79.9% 9 E oo Fe
PANORAMA-NN [33] 91.1% =" s =
VConv-DAE [34] 80.5% Je 8 ]
3D-GAN [34] 91.0% 5. 5 o0 5
3D-WINN [16] 91.9% 2, & s £
3D-DescriptorNet [-+] 92.4% g\ g‘ 00 g‘ 4
Primitive GAN [19] 92.2% B o 2 =]
FoldingNet [51] 94.4% 9 g @ s <,
I-GAN[1] 95.4% - 150
PointFlow [50] 93.7%

oo 02 04 06 0.8 10 0.0 0z 04 0.6 L] 10 10 0 107t 10°

Ours 93.7% Missing Point Ratio Added Point Ratio

Standard Deviation for Adding Noise

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021

Jianwen Xie, Ying Nian Wu
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
. Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
. Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks

. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Energy-Based Continuous Inverse Optimal Control

1
Po(x) = 7, &P [fo ()]

!
o

T =

~-15

40 60 80 100 120 140 160 180

Energy-Based Model Inverse Optimal Control
i Use cost function as the energy function in EBM probability distribution of trajectories;
* Perform conditional sampling as optimal control;
* Take advantage of known dynamic function and do back-propagation through time;
* Define joint distribution for multi-agent trajectory predictions.

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Energy-Based Continuous Inverse Optimal Control

* Optimal Control: finite horizon control problem for discrete time t € {1, ...,T}.

states X = (xt, t=1,.., T) {longitude, latitude, speed, heading angle, acceleration, steering angle}
controlu = (u,t = 1,..,T) {change of acceleration, change of steering angle}

The dynamics is deterministic, x; = f(x;_1,u;), where f is given.

The trajectoryis (x,u) = (x;,ust = 1,..,T).

The environment condition is e.

The recent history h = (x;, u;, t = —k, ...,0)

N o v & w b oE

The cost function is Cy (X, u, e, h) where 0 are parameters that define the cost function

* The problem of inverse optimal control is to learn 8 from expert demonstrations

D = {(Xi,ui,ei,hi),i = 1, ...,Tl}.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving
Workshop at NeurlPS 2020
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Energy-Based Continuous Inverse Optimal Control

Energy-Based Model for Inverse Optimal Control:

1
po(ulfe h)= M exp [—CQ(X, u, e, h)]

where Zy(e,h) = /exp [—Cy(x,u,e, h)] du is the normalizing constant.

* Xxis determined by u according to the deterministic dynamics.
* The cost function Cy (X, u, e, h) serves as the energy function.

For expert demonstrations D, u; are assumed to be random samples from pgy (ule, h), so that u; tends to

have low cost Cy(Xx,u, e, h).

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving
Workshop at NeurlPS 2020

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Energy-Based Continuous Inverse Optimal Control

Parameters 6 can be learned via MLE from expert demonstrations D = {(x;,u;,e;, h;),i = 1, ...,n}

1 n
The loglikelihood  L(f) = - E log pg (u; | €, h;)
i=1

1 — s, 3,
L'(9) = — Z[Epg(uhi,hi) (@CB (x,u, €i,hz‘)) —%Ca (Xi;uiaeiahi)]

n

The gradient
i=1

A I [0 , . . 0
L,(G) — E Z |:_09 (Xi; u;, €4, h?.) . @09 (Xiauive’h hﬁ):|
i=1

(X;,U;) can be either sampled through Langevin dynamics or predicted through optimization method (that is, seek

the minimum cost). During sampling, the trajectory will be roll-out every step by dynamic function and perform back-

propagation through time.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving

Workshop at NeurlPS 2020

CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models

Jianwen Xie, Ying Nian Wu



Energy-Based Continuous Inverse Optimal Control

Dataset: NGSIM-US101
* Collected from camera on US101 highway.
* 10 frame as history and 40 frames to predict. (0.1s / frame)

* 831 total scenes with 96,512 5-second vehicle trajectories.
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[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving
Workshop at NeurlPS 2020
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Multi-Agent Prediction

There are K agents: StatesX = (x*,k =1,2,...,K), and controls U = (u*, k = 1,2, ..., K)
All agents share the same dynamic function, x{ = f(xf_;, uf).

The overall cost function Cg(X, U, e, h) = YX_, Co(x¥, u*, e, h¥)

1
Ule h)= ——exp|—Cp(X,U,e, h
p@( | ) ) Zg(e, h) Xp [ 9( s U,y Gy )]

° S - e | o* . 4, ° 5 S e e o - 5 e o o 3
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Multi-agent prediction on NGSIM US101 dataset (Grey: Lane ; Red: Ground truth ; Green: Prediction )

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving
Workshop at NeurlPS 2020
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
. Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
. Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks

. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



External learning v.s. Internal Learning

External learning:

Learn a distribution of images within a set of natural images

Internal learning:

Learn an internal distribution of patches within a single natural image

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Patchwise Generative ConvNet for Internal Learning

A pyramid of EBMs, {pgs(l(s)),s =0, ..., S}, trained against a pyramid of images of different scales {I(s),s =
o,..,5} )
1) = [ I<8)} =0,...8
{po(I'*) Z0,) exp | fp,(I'™)|,s=0,..., S}

Each pg, (I(s)) is responsible to synthesize images based on the patch distribution learned from the image

1) at the corresponding scale s -

_Z l Synthesis Real
R )
S MCMC m ‘o )| “
e Fors=090.,S

lpsample l
oL () 0 s 1 — 0 =(s) m MCMC
o6, — 08,7" (1) - n 2_:1 la_esf 0. (I )} [t

where a pyramid of synthesis {i(s),s =1,..,5}

are obtained via sequential multi-scale

sequential sampling.

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021

Jianwen Xie, Ying Nian Wu
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Multi-Scale Sampling

) | up-sample
up-sample up-sampie

n------nnmmmmﬁ.i

scaleg S al( 1 scaley scales scaley

Z ~Uyg ((-1,1)9) s=10

(s) _ -

sl R =] (If;;l_)l)) s> 0
2

) _7(s) , O <(5) (5)

La=0"*3 a0 >f (1) +acl

where t =0,.., K®) —1

multi-scale sequential sampling process starting from a randomly initialized Z

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Unconditional Image Generation Results

Input _Synthesis Results Input 1 scale

o e b = s © arteguias.com

Random Image Samples. Each row demonstrates a single training example Influence of different
and multiple synthesis results of various aspect ratios. numbers of scales

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Single Image Super Resolution

Super-Resolution results from BSD100. The first column shows the initial image used for training.

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Image Manipulation

Train Image
N

Image harmonization

Paint to Image Image Editing
Train Image Paint , Output Train Image Edited Input

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks
. Unconditioned image, video, 3D shape synthesis
Supervised conditional learning
. Unsupervised image-to-image translation

Unsupervised sequence-to-sequence translation

Jianwen Xie, Ying Nian Wu CVPR 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Unconditioned Image, Video, 3D Shape Synthesis
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[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks

. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation

Unsupervised sequence-to-sequence translation
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Conditional Learning as Problem Solving

* Let x be the D-dimensional output signal of the target domain, and ¢ be the input signal of the source
domain, where “c” stands for “condition”. ¢ defines the problem, and x is the solution.

* The goal is to learn the conditional distribution p(x |c) of the target signal (solution) x given the source
signal ¢ (problem) as the condition. p(x |c) will learn from the training dataset of the pairs {(x;,c;),

i =1,..,n}

* Examples:c = x

-2 5%%
222 AR 2

Label-to-image synthesis Image inpainting Image-to-image synthesis
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Fast-Thinking and Slow-Thinking

The cooperative learning scheme is extended to the conditional learning problem by jointly training a
conditional energy-based model and a conditional generator model.

They represent (problem c, solution x) pair from two different perspectives:

1
* The conditional energy-based model is of the following form  py(x|c) = m exp|fo(z,c)]
b
solve a problem via slow-thinking (iterative): g, \, = 2, + %Vmﬁ? (21, ¢) + V Atey

«  The conditional generator is of the following form = = ga(2,¢) + €,z ~ N(0,13), e ~ N(0,0%Ip)

solve a problem via fast-thinking (non-iterative): & = g (2, €)

Fast-thinking v.s. Slow-thinking

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Cooperative Conditional Learning

fast-thinking initializer

O model

= Initialize !
| i 10 B -
Z ~ N(O, I); Tr = ga(z’ c) + €€~ N(O, 02[) o (—: initial solution | s
£ ] I synthesis
= Kb '
slow-thinking solver E 5 —> learning
Sol - — i
po(ele) =~ explfo(z, o) L e ey | S
Z(c,0) P i ® ) input
At VAl observed soluton —— §
Ti+At = Tt T 7V zfo(ze,c) + V Atey .

Diagram of fast thinking and slow thinking conditional learning

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Label-to-Image Generation

Image generation conditioned on class label
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[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Image-to-Image Generation

condition ground truth Ppix2pix cVAE-GAN CVAE-GAN++ BicycleGAN initializer (ours) solver (ours)

f(Y,C;0) C (condition image)

condition
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initializer  GT
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[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks
. Unconditioned image, video, 3D shape synthesis
Supervised conditional learning
. Unsupervised image-to-image translation

Unsupervised sequence-to-sequence translation
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Unsupervised Image-to-Image Translation

®* Image-to-image translation has shown its importance in computer vision and computer graphics.

®* Unsupervised cross-domain translation is more applicable than supervised cross-domain
translation, because different domains of independent data collections are easily accessible.

Cezanne
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Cycle-Consistent Cooperative Network

* Twodomians{x;; i=1,..,n,} € X and {yi;i =1, ...,ny} € Y without instance-level correspondence

* Cycle-Consistent Cooperative Network (CycleCoopNets) simultaneously learn and align two EBM-generator pairs

1
Y= X p(:0x),Gyor(y; ax)} p(x;bx) = 702 P [/ (;02)] po()
Y2 Y piby), Gaoy(zon)} p(i6y) = 5= w1 (50 (0

where each pair of models is trained via MCMC teaching to form a one-way translation. We align them by
enforcing mutual invertibility, i.e.,

r; = Gy x (Gxoy (Tiay) s ax)

yi = Gxoy (Gysx (Yisax) ;o)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

p(x) p®)
—— true distribution === MCMC/Langevin
=== EBM update === LVM update )
= LVMindomain x = LVMindomainy
= EBM in domain x ——— EBMin domainy i
X translated example in domain x o translated example in domain y u -
X observed example in domain x o observed example in domain y

Step (1): cross-domain mapping

{2i ~ Paata ()} iy {0 = Gaoy (zi;0) 1,
{yi ~ paata (V) }iey {&i = Gyox (Yisax)}i

Starting from {g}i}?zl ,run [ steps of Langevin revision to obtain {gi}fle
Starting from {:E@-}?Zl ,run [ steps of Langevin revision to obtain {iﬁi}?’:l

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

—— true distribution === MCMC/Langevin p(x) P(®)
=== EBM update === LVM update
=3 LVMin domain x ==p LVMin domainy @
= EBM in domain x EBM in domain y
X translated example in domain x o translated example in domain y > x
X observed example in domain x o observed example in domain y

Step (2): density shifting

Given {7} and {#}_,,update QSEH) = 92_3) + 70, A (93’:‘))

Given {y}, and {7}, update BS‘H) = Hg}t) + 76, A (HS))

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

——— true distribution === MCMC/Langevin P() PO)
===p EBM update === LVM update o,
=3 LVMin domain x ==p LVMin domainy
——— EBMin domain x EBM in domain y 3) Yi ¥i/¥i
X translated example in domain x o translated example in domain y G, > x B L & i
X observed example in domain x o observed example in domain y A = _’}:’ —» ]
- T Gy

Step (3): mapping shifting with cycle consistency

mn

N 9

Licach (ax) = E |Zi — Gy x (yi, ax)||
o]

Lieach (0537) - Z ||g1, - GX—>37 (miaay)HQ

1=1

2
Leyae (0x,ay) = Y [[2i = Gyox (Groy (wioy)sax)|* + D [y — Gasy (Gysx (yisax) s ay))|
i—1 i=1

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Unsupervised Image-to-Image Translation

;Original - Monet ) ) \n(m h ' Cezanne / -¢ Input quleGAN UNIT DRIT

winter = summer

Collection style transfer from photo realistic images to artistic styles Season transfer

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks
. Unconditioned image, video, 3D shape synthesis
Supervised conditional learning
. Unsupervised image-to-image translation

. Unsupervised sequence-to-sequence translation
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Unsupervised Sequence-to-Sequence Translation

* The CycleCoopNets framework can be generalized to learning a translation between two domains of
sequences where paired examples are unavailable.

* For example, given an image sequence of Donald Trump's speech, we can translate it to an image
sequence of Barack Obama, where the content of Donald Trump is transferred to Barack Obama but
the speech is in Donald Trump's style.

* Such an appearance translation and motion style preservation framework may have a wide range of
applications in video manipulation.

‘ .‘ “'. . “‘\
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Unsupervised Sequence-to-Sequence Translation

Two medications are made to adapt the CycleCoopNets to image sequence translation.

(1) learn a recurrent model in each domain to predict future image frame given the past image frames in a

sequence. Let R, and Ry denote recurrent models for domain X and Y respectively. We learn R, and Ry by
minimizing

Lyec (Rx) Z |Zerkt1 — R (wreer) |

Lrec (R))) e Z ||yt+k-|—1 e Ry (:‘H:H—k)”z
t

where Ltttk — (IL‘t, ...,$t+k) and Yt:t+k = (yta -'-ayt—l—k)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021

Jianwen Xie, Ying Nian Wu
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Unsupervised Sequence-to-Sequence Translation

(2) With the recurrent models, we modify the loss for G to take into account spatial-temporal information

Lyt (Gxy—y, Ry, Gy x)
= |tsrs1 — Gyox (Ry (Gxsy (@)
t

Ls (Gysx, Ry, Gxoy)

=) lyesns1 — Gxoy (Rx (Gy—x (W)
7

The final objective of G and R is given by

minG,R L(Ga R) — Lrec (RX) + Lrec (Ry) + AlLteach (Gy—mc)
+A1 Lteach (Gx—y) + AaLst (Gx—y, Ry, Gy, x)
+XoLgt (Gy v, Ry, Gxy)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Unsupervised Sequence-to-Sequence Translation

Input

Image sequence translation

Output

(a) Barack Obama to Donald Trump

(a) translate Barack Obama’s facial
Y, i motion to Donald Trump.

(c) purple flower to red flower

Input

(b) translate from the blooming of a violet
flower to a yellow flower.

Output

(c) translate the blooming of a purple
flower to a red flower.

Input

Output

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks
. Unconditioned image, video, 3D shape synthesis
Supervised conditional learning
. Unsupervised image-to-image translation

Unsupervised sequence-to-sequence translation
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Latent Space Energy-Based Prior Model

x: observed example. z: latent vector.
Jal2

po(x,z) = pa(2)ps(z|2) t

Pa(2) = 7y xPfa(2)po(2) Z

T =gg(z) +¢€

* Standing on a top-down generator model.
* Correcting non-informative prior p,.
» Captures regularities/rules/constraints or objective/cost/value probabilistically in latent space.

* Sampling in latent space is efficient and mixes well.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Text Generation

RNN/auto-regressive generation model for text.
z is a thought vector about the whole sentence and controls the generation of the sentence at each time step.

pa(z|z) = Hpg c®)zM 2D )
t=1

Jidge in <unk> wasnot

w estvirginia bank <unk> w hich has been underN law took effectofoctoberN

m . peterson N years old could retum to w otk w ith his clients to pay

iras m ustbe

anticipating bonds tied to the im perial com pany ’s revenue of $ N m illion today

m any of these N funds in the industrial average rose o N N from N N N

fund obtaining the the

ford ’s latestm ove is expected to reach an agreem ent in principle for the sale of its loan operations

w all streethas been shocked overby the m erger of new york co. aw orld-w ide financial board of the com panies said itw o

n’tseek strategic altematives to the brokerage industry ’s directors

20 100

Table 3: Transition of a M arkov chain iitialized from py (2) tow ards pe (z). Top: Trajctory in the PTB
data—space. Each panel contains a sam ple for/(oo 2 {0,40,100/. Bottom : Energy profile.
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Text Generation

SNLI PTB Yahoo
Models FPPLL. RPPL NLL FPPL. RPPL NLL FPPL RPPL NLL
Real Data 23.53 - - 10036 - - 60.04 - -
SA-VAE 39.03 46.43 33.56 147.92 210.02 101.28 128.19 148.57 326.70
FB-VAE 30.19 43.47 28.82 145.32 204.11 92.89 123.22 141.14 319.96
ARAE 4430 82.20 28.14 165.23 232.93 91.31 158.37 216.77 320.09
Ours 27.81 31.96 28.90 107.45 181.54 91.35 80.91 118.08 321.18

Table 2: Forward Perplexity (FPPL), Reverse Perplexity (RPPL), and Negative Log-Likelihood (NLL) for our
model and baselines on SNLI, PTB, and Yahoo datasets.
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks
. Unconditioned image, video, 3D shape synthesis
Supervised conditional learning
. Unsupervised image-to-image translation

Unsupervised sequence-to-sequence translation
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Molecule Generation

¢

O‘S‘O\f \,Q* P o 454 . TR fo\",c(o mﬁ r® THL et
: Let x be an observed molecule

% . represented in SMILES strings
>0 g qrg% ~Fc o‘q(f d e RgHd o oo

z ~ pa(2), $NPB($|Z),
O ToR o 9 Lo | R PP R P R

‘ where
oS v et o PO 5“‘3)5 QD Ror& "0x® 20 AL Quor

Pa(2) =

i X0 (a2 20(2)

)\(‘.’ S \%’ g@_}_@o b{’ \_rr\&(o O**’y? %0 ) .
FH Yo’ S OP oo ps(alz) = [ ps(@® | 2™, ... D), 2)
t=1

(a) ZINC (b) Generated

Sample molecules taken from the ZINC dataset (a) and generated by our model (b)

(1) RNN/auto-regressive model for SMILES sequence (2) EBM prior captures chemical rules implicitly

[1] Bo Pang, Tian Han, and Ying Nian Wu. Learning latent space energy-based prior model for molecule generation. Machine Learning for Molecules Workshop at NeurlPS, 2020

Jianwen Xie, Ying Nian Wu
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Molecule Generation

Evaluations
*  Validity: the percentage of valid molecules among all the generated ones
*  Novelty: the percentage of generated molecules not appearing in training set

* Uniqueness: the percentage of unique ones among all the generated molecules

Model Model Family  Validity w/ check  Validity w/o check  Novelty = Uniqueness
GraphVAE (Simonovsky et al., 2018) Graph 0.140 - 1.000 0.316
CGVAE (Liu et al., 2018) Graph 1.000 - 1.000 0.998
GCPN (You et al., 2018) Graph 1.000 0.200 1.000 1.000
NeVAE (Samanta et al., 2019) Graph 1.000 - 0.999 1.000
MRNN (Popova et al., 2019) Graph 1.000 0.650 1.000 0.999
GraphNVP (Madhawa et al., 2019) Graph 0.426 - 1.000 0.948
GraphAF (Shi et al., 2020) Graph 1.000 0.680 1.000 0.991
ChemVAE (Gomez-Bombarelli et al., 2018) LM 0.170 - 0.980 0.310
GrammarVAE (Kusner et al., 2017) LM 0.310 - 1.000 0.108
SDVAE (Dai et al., 2018) LM 0.435 - - -
FragmentVAE (Podda et al., 2020) LM 1.000 - 0.995 0.998
Ours LM 0.955 - 1.000 1.000
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks
. Unconditioned image, video, 3D shape synthesis
Supervised conditional learning
. Unsupervised image-to-image translation

Unsupervised sequence-to-sequence translation
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Anomaly Detection

* If the generator and EBM are well learned, then the posterior pg (x, z) would form a discriminative latent

space that has separated probability densities for normal and anomalous data.

* Take samples from the posterior of the learned model and use the unnormalized log-posterior log pg (x, 2)

as the decision function.

Heldout Digit | 1 | 4 | 5 | 7 | 9
VAE 0.063 0.337 0.325 0.148 0.104
MEG 0.281 4 0.035 | 0.401 £0.061 | 0.402 4+ 0.062 | 0.290 + 0.040 | 0.342 + 0.034

BiGAN-o | 0.287 £0.023 | 0.443 +£0.029 | 0.514 + 0.029 | 0.347 +0.017 | 0.307 & 0.028
Latent Space EBM 0-336 = 0.008 | 0.630 £ 0.017 | 0.619 = 0.013 | 0.463 + 0.009 | 0.413 = 0.010

AUPRC scores (larger is better) for unsupervised anomaly detection on the MNIST dataset.
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks
. Unconditioned image, video, 3D shape synthesis
Supervised conditional learning
. Unsupervised image-to-image translation

Unsupervised sequence-to-sequence translation
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Trajectory Prediction

z: latent thought/belief of whole trajectory (event)
* Prediction as inverse planning

* Energy as cost function, defined on whole trajectory
* Goes beyond Markov decision process framework
(1) non-Markovian dynamics

(2) non-stepwise cost

results of our proposed method across 4 differe
d from 20 trials from LB-EBM. Second row: The 20 predict

s that has social i ions. The observed trajectori
terms of white, blue and red dots respectively.

[1] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory prediction with latent belief energy-based model. CVPR, 2021.
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Trajectory Prediction

|| ADE | FDE

S-LSTM [1] 31.19 | 56.97
S-GAN-P[13] || 27.23 | 41.44
MATF [52] 22.59 | 33.53
Desire [21] 19.25 | 34.05
SoPhie [42] 16.27 | 29.38
CF-VAE [3] 12.60 | 22.30
P2TIRL [7] 12.58 | 22.07
SimAug [24] 10.27 | 19.71
PECNet [28] 9.96 | 15.88

Ours H 8.87 ‘ 15.61
Table 1. ADE / FDE metrics on Stanford Drone for several methods compared to ours are shown. The lower th

| ETH | HOTEL | UNIV | ZARAl | ZARA2 A

Linear * [1] 1.33/2.94 1 0.39/0.72 | 0.82/1.59 | 0.62/1.21 | 0.77/1.48 | 0.79
SR-LSTM-2* [51] || 0.63/1.25 | 0.37/0.74 | 0.51/1.10 | 0.41/0.90 | 0.32/0.70 | 0.45
S-LSTM [1] 1.09/2.35 1 0.79/1.76 | 0.67/1.40 | 0.47/1.00 | 0.56/1.17 | 0.72
S-GAN-P [13] 0.87/1.62 | 0.67/1.37 | 0.76/1.52 | 0.35/0.68 | 0.42/0.84 | 0.61
SoPhie [47] 0.70/1.43 | 0.76/1.67 | 0.54/1.24 | 0.30/0.63 | 0.38/0.78 | 0.54
MATF [5] 0.81/1.52 | 0.67/1.37 | 0.60/1.26 | 0.34/0.68 | 0.42/0.84 | 0.57
CGNS [22] 0.62/1.40 | 0.70/0.93 | 0.48/1.22 | 0.32/0.59 | 0.35/0.71 | 0.49
PIF [20] 0.73/1.65 | 0.30/0.59 | 0.60/1.27 | 0.38/0.81 | 0.31/0.68 | 0.46
STSGN [50] 0.75/1.63 | 0.63/1.01 | 0.48/1.08 | 0.30/0.65 | 0.26/0.57 | 0.48
GAT [19] 0.68/1.29 | 0.68/1.40 | 0.57/1.29 | 0.29/0.60 | 0.37/0.75 | 0.52
Social-BiGAT [19] || 0.69/1.29 | 0.49/1.01 | 0.55/1.32 [ 0.30/0.62 | 0.36/0.75 | 0.48
Social-STGCNN [30] || 0.64/1.11 | 0.49/0.85 | 0.44/0.79 | 0.34/0.53 | 0.30/0.48 | 0.44
PECNet [2¢] 0.54/0.87 | 0.18/0.24 | 0.35/0.60 | 0.22/0.39 | 0.17/0.30 | 0.29
Ours | 0.30/0.52 | 0.13/0.20 | 0.27/0.52 | 0.20/0.37 | 0.15/0.29 | 0.21

sle 2. ADE / FDE metrics on ETH-UCY for several methods compared to ours are shown. The models with * mark are
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Model
. Generative ConvNet: EBMs for images . Text Generation
Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule Generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly Detection
Generative PointNet: EBMs for unordered point clouds . Trajectory Prediction
. EBMs for inverse optimal control and trajectory prediction . Semi-Supervised Learning
Patchwise Generative ConvNet: EBMs for internal learning . Controlled Text Generation

2. Energy-Based Generative Cooperative Networks
. Unconditioned image, video, 3D shape synthesis
Supervised conditional learning
. Unsupervised image-to-image translation

Unsupervised sequence-to-sequence translation
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Semi-Supervised Learning

x: observed example. y: one-hot category (symbol). z: dense latent vector

Po(y, 2, %) = paly; 2)ps(z|2)

1
* The prior model is an energy-based model P (y, Z) = exp((y, Fq (z)))po(z)

Z(a)

* pp(x|z): top-down generation model

*  po(¥|2): soft-max classifier Pq(y|2) x exp({y, Fo(2))) = eXp(chy)(z))

Semi-supervised log-likelihood

L) = logps(z)+A > logps(y|z)

all labeled

[1] Bo Pang, Erik Nijkamp, Jiali Cui, Tian Han, and Ying Nian Wu. Semi-supervised learning by latent space energy-based model of symbol-vector coupling. ICBINB Workshop at NeurIPS, 2020
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Semi-Supervised Learning

AGNews-Unigram

Method 200 Labels
Self-training 773+ 1.7 SVHN CIFAR-10
Glove (ID) 704 + 1.2 Method 1000 Labels 4000 Labels
Glove (OD) 68.8 = 5.7 VAE M1+4M2 64.0 -
VAMPIRE 81.94+0.5 AAE 82.3 -
Ours 84.5+0.3 JEM 66.0 -
FlowGMM 82.4 78.2
Accuracy on text dataset Ours 92.0 78.6
Hepmass  Miniboone Protein EI;SI&EGN gg% ggg
Method 20 Labels 20 Labels 100 Labels II-Model 94.6 83.6
RBF Label Spreading 84.9 79.3 - VAT 94.3 85.8
JEM - - 19.6
FlowGMM 885402 805+07 . Accuracy on SVHN and CIFAR-10
Ours 89.1 0.1 81.24+03 23.14+0.3
II-Model 879+ 0.2 80.8 +0.01 -
VAT - - 17.1

Accuracy on tabular datasets from the UCI repository.
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Part III: Applications
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Controlled Text Generation

Generative Model thp (y z)
p@(yazax) :pa(ya Z)p5($|27) Z G
Symbol-Vector Coupling Prior Q¢(Z|£L') lpg (a:|z)
1
Pa(y, 2) = -~ exp({y, fa(2)))po(2) T
o Learning with Information Bottleneck
Marginal Prlolr of the Continuous Vector £(0,6) = Dkr(Qu(z, 2)|| Po(x, 2)) — AT(2,y)
Pa(2) = 7 exp(Fo(2))po(2) = —H(z) — Eq, (@.» log ps(z|2)]
Fo(z) =log Y exp((y, fa(2))) + Dict. (g (2)l|pa(2))
Y EBM learning
Infer Symbol from Vector
+g($: Z) - )\I(Z, yla
Pa (y|Z) X eXp(<y7 fO{ (Z)>) informatio?lrbottleneck
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Controlled Text Generation

Discover Action and Emotion Labels in Daily Dialogue Sample Actions and Corresponding Utterances

Model MI"  BLEUT  Action” Emotion”
Action Inform-weather

DI-VAE 1.20 3.05 0.18 0.09
semi-VAE 0.03 4.06 0.02 0.08 Next week it will rain on Saturday in Los Angeles
semi-VAE + Z(z, y) 121 3.69 0.21 0.14 Utterance It will be between 20-30F in Alhambra on Friday.
GM-VAE 0.00 2.03 0.08 0.02 It won’t be overcast or cloudy at all this week in Carson
GM-VAE +Z(z, y) 1.41 2.96 0.19 0.09
DGM-VAE 053 763 0.1 0.09 Action Request-traffic/route
DGM-VAE + Z(z, y) 1.32 7.39 0.23 0.16
SVEBM 0.01 11.16 0.03 0.01 Which one is the quickest, is there any traffic?
SVEBM-IB 242 10.04 0.59 0.56 Utterance  Is that route avoiding heavy traffic?

Is there an alternate route with no traffic?

Table 2. Results of interpretable language generation on DD. Mu
tual information (MI), BLEU and homogeneity with actions anc
emotions are shown.
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Controlled Text Generation

Accuracy of Sentiment Control on Yelp Review Generated Positive and Negative Reviews
Model Overall”  Positive”  Negative™ The staff is very friendly and the food is great.
The best breakfast burritos in the valley.
DGM-VAE + T (z, y) 64.7% 95.3% 34.0% Positive So I just had a great experience at this hotel.
CGAN 76.8% 94.9% 58.6% It’s a great place to get the food and service.
SVEBMIB 20-1% 95-1% 85.2% I would definitely recommend this place for your customers.

I have never had such a bad experience.
The service was very poor.

Negative I wouldn’t be returning to this place.
Slowest service I've ever experienced.
The food isn’t worth the price.
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Summary

Models and methods

(1) Data space EBM.

(2) Interaction with generator model.
(3) Latent space EBM

Why is EBM useful?

(1) Density estimation and synthesis.

(2) Soft objective/cost/value or soft regularization/rules/constraints.
(3) Generative classifier, contrastive self-supervised learning.
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