

Plan

- 1. Fundamentals: background, basic knowledges, illustrative examples (presented by Jianwen Xie)
- 2. Advanced: present advanced methods, explain key ideas and equations (presented by Ying Nian Wu)
- **3. Applications:** applications of 1 and 2. (presented by Jianwen Xie and Ying Nian Wu)

Disclaimer:

References are not comprehensive or complete. Please refer to our papers for more references.

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

Probabilistic Models of Images

34 36 36 40 44 46 48 49 48 49 49 49 50 49 50 47 46 46 46 46 48 49 50 48 48 48 49 50 48 48 48 47 43 59 45 57 03 04 04 03 03 03 03 01 37 03 74 74 40 41 40 41 40 41 40 41 40 41 34 36 36 36 40 46 47 47 48 40 48 49 49 49 49 48 48 52 54 52 47 47 48 48 49 48 48 48 46 42 40 44 56 60 62 63 62 62 63 61 59 57 56 82 97 75 38 43 29 06 08 32 36 36 37 41 45 46 48 48 49 49 49 49 49 50 57 58 63 70 75 74 76 70 54 45 48 48 47 47 42 39 43 56 58 60 62 61 61 60 59 57 56 56 62 93 97 56 28 05 07 10 0 30 34 34 36 40 43 46 46 47 48 48 51 54 48 51 53 58 61 67 71 74 78 80 83 71 47 45 46 46 43 40 37 43 56 58 59 60 61 58 58 57 56 56 56 55 75 99 74 04 06 09 08 0 29 33 34 36 38 42 43 45 47 47 51 42 45 46 50 50 52 56 63 72 75 78 81 82 84 81 52 39 41 41 39 37 42 57 60 58 56 58 56 57 57 56 57 57 56 57 57 60 85 23 04 08 09 07 30 34 34 35 38 42 42 44 46 48 46 40 42 47 49 51 52 55 60 68 75 79 81 83 83 84 89 71 36 38 37 36 41 59 63 59 48 48 58 57 58 57 57 58 59 61 21 05 07 08 06 09 1 30 34 35 35 38 41 43 45 46 46 39 42 44 45 47 51 52 54 58 67 77 80 78 81 87 91 92 96 70 30 34 33 40 58 62 61 43 26 52 58 58 57 58 58 61 34 04 07 09 06 08 08 31 34 35 38 42 43 46 46 39 40 43 42 43 48 53 54 56 58 65 72 73 84 90 89 88 90 92 97 51 27 30 40 59 62 61 46 09 37 57 58 57 57 59 50 08 07 10 07 09 07 13 27 33 34 35 37 40 59 52 36 40 41 47 47 47 50 44 62 73 70 74 75 81 80 82 82 85 86 86 87 90 90 94 51 56 63 62 44 06 48 82 92 94 98 29 07 09 07 07 09 26 59 61 129 34 35 36 39 40 69 47 35 38 42 45 47 49 45 60 65 68 73 76 76 77 75 78 82 84 85 85 81 86 88 88 64 62 59 45 69 84 91 89 89 97 31 08 08 06 08 08 54 60 65 130 34 35 34 37 36 73 46 36 36 40 44 45 46 58 60 59 67 73 71 75 71 74 76 77 80 81 76 80 84 84 84 83 81 61 74 84 86 89 87 88 92 97 19 08 07 06 09 36 60 64 65 130 34 34 34 36 34 83 52 39 37 40 45 45 57 57 54 61 64 69 70 69 72 73 72 75 78 76 79 81 79 77 78 74 81 82 85 88 87 86 89 84 91 91 06 08 06 08 22 57 61 65 64 130 34 34 34 36 36 83 60 48 36 40 42 53 56 51 59 59 60 65 69 70 70 71 69 69 72 75 77 75 75 71 72 79 82 86 85 86 87 84 69 77 59 06 08 06 12 45 60 65 65 65 130 33 33 34 38 81 64 53 38 39 53 51 49 57 55 57 59 63 64 66 67 67 65 68 69 70 70 69 67 74 79 84 84 83 84 87 87 90 71 64 73 27 07 07 08 28 59 62 65 64 64 130 32 32 33 33 40 85 70 60 45 48 50 48 54 52 52 56 59 52 48 48 56 52 62 62 62 65 60 65 75 82 84 81 83 85 87 88 90 82 51 43 75 04 08 09 11 50 60 64 64 63 63 129 33 34 33 34 36 88 76 54 46 44 43 53 50 49 51 55 50 47 38 28 54 37 29 27 14 13 49 74 83 84 84 83 85 86 89 84 63 38 34 71 34 06 06 08 23 58 63 65 65 64 63 129 32 34 34 32 28 85 79 51 52 40 51 49 48 50 53 46 47 34 23 15 35 27 28 18 06 47 70 80 83 81 82 82 84 84 67 34 34 51 74 31 06 07 08 10 45 60 67 66 65 64 64 129 32 34 33 34 31 67 83 63 48 49 47 46 47 49 47 38 21 16 08 24 19 29 18 22 50 73 78 78 77 78 81 83 61 36 45 62 69 76 34 06 09 07 08 18 57 64 68 67 66 65 63 12832323335364086734648464846484647231321071713183043748276767478807326364563722605091006093654696867676564 127 32 32 33 36 39 34 73 79 47 42 46 47 45 29 17 24 10 21 13 08 13 21 37 63 77 75 73 73 74 81 84 84 46 24 38 59 19 05 09 12 08 07 14 47 58 69 68 67 67 66 65 128353635394441536142474218091511081225240749716475746866758387899275190955141013120708465864616162636565 53035363639424344514848211506151310111714426476687566572768386899285320548161114100819546467656462595959 129 35 35 39 42 49 43 37 50 32 18 19 06 17 07 12 15 12 31 62 70 75 75 48 52 64 74 74 80 83 86 90 84 31 04 39 26 14 15 08 08 37 54 66 65 65 67 65 62 60 58 530 35 35 35 38 43 57 38 30 35 20 18 25 08 12 11 08 17 18 60 77 72 72 50 50 45 29 46 69 76 82 80 57 38 28 07 30 34 15 12 08 11 48 59 65 64 63 64 64 62 62 63 428 34 33 32 48 60 61 48 19 19 28 30 10 17 04 21 08 04 49 73 84 65 20 12 10 21 23 48 58 73 86 46 19 13 13 07 26 40 15 08 08 17 53 63 64 63 63 63 62 62 62 530353528466847181716173606081406062564807637142725843842537672223142070525451708083457646361616162615958 834392836585318231619274116050806085375744753494556685947518072515228140822501707114660636161636161585653 733 39 49 48 25 12 17 37 19 16 31 37 20 06 06 05 34 69 75 37 51 61 63 62 61 66 63 52 49 76 85 62 51 39 22 08 19 55 14 08 15 52 63 62 61 61 60 60 58 56 53 68 733465039241835330613283033090616548027405161697373726356497089675448261114600807285664626161595856526984 633 40 38 31 25 20 36 17 07 07 12 08 42 21 02 36 74 41 16 43 50 58 66 73 74 71 61 56 49 66 90 66 57 49 21 10 11 62 09 09 41 61 63 62 60 59 58 57 53 60 83 83 441 48 29 37 21 26 41 23 10 04 20 20 52 28 09 53 70 05 19 41 50 57 63 68 70 68 57 51 47 60 92 64 56 47 13 14 09 57 18 10 52 64 63 62 60 59 57 55 53 76 83 84 539432531212642220806253719044162190624404954606265645150505791625539061508502719576462616060585363848388 93139243224193741081307260623744203082941485359616363534638467660532107160942323560636160605857527484879023. 44 17 27 20 27 37 47 20 38 108 24 50 43 54 17 12 100 34 43 45 52 57 50 62 64 61 55 62 71 75 50 45 100 102 21 12 33 38 49 61 62 61 60 59 58 56 53 80 85 90 90

- An image is a collection of numbers indicating the intensity values of the pixels, and is a high dimensional object.
- A population of images (e.g., images of faces, cats) can be described by a probability distribution.
- A probabilistic model is a probability distribution parametrized by a set of parameters, which can be learned from the data.
- Probabilistic framework and probabilistic models enable supervised, unsupervised, and semi-supervised learning, as well as model-based reinforcement learning.

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

Gibbs Distribution in Statistical Physics

$$p(x) = \frac{1}{Z} \exp\left(-\frac{E(x)}{T}\right)$$
$$Z = \int \exp\left(-\frac{E(x)}{T}\right) dx$$

Energy-based model originates from the Gibbs distribution in statistical physics:

- x is the state of a system (e.g., ferromagnetic substance, a cup of water, gas...).
- E(x) is the energy of the system at state x.
- T is the temperature. As $T \to 0$, p(x) focuses on the global minima of E(x).
- Z is the normalizing constant, or partition function, to make p(x) a probability density.
- The partition function is ubiquitous in statistics physics (also quantum physics).
- States of low energies have high probabilities

Energy-Based Model (EMB)

$$p_{ heta}(x) = rac{1}{Z(heta)} \exp(f_{ heta}(x))$$
 $Z(heta) = \int \exp(f_{ heta}(x)) dx$

In this tutorial, we present energy-based model (EBM):

- x is an image (or video, text, etc.)
- -E(x)/T will be parametrized by modern ConvNet $f_{\theta}(x)$, where θ denotes the parameters.
- $f_{\theta}(x)$ captures **regularities**, rules, organizations and constraints probabilistically.
- In conditional settings, $f_{\theta}(x)$ acts as **soft objective function, cost function, value function, or critic**.
- It actually is a **softmax probability**, recall in classification, for a category c, with logit score f(c),

$$\Pr(c) = \frac{1}{Z} \exp(f(c)) = \frac{\exp(f(c))}{\sum_{c} \exp(f(c))}$$

• Here we assign score $f_{\theta}(x)$ to each x, and **softmax over all** x (as if each x is a category).

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

FRAME (Filters, Random field, And Maximum Entropy)

$$p_{\theta}(\mathbf{I}) = \frac{1}{Z(\theta)} \exp \left[\sum_{k=1}^{k} \sum_{x \in \mathcal{D}} \theta_k h(\langle \mathbf{I}, B_{k,x} \rangle) \right] q(\mathbf{I})$$

The output circle as seen when pass through individual Gabor filter

Original image, Gabor filters, filtered images (taken from internet)

I denotes the image

x: pixel, position; D: domain of x

 $B_{k,x}$ is Gabor **filter** of type (scale/orientation) k at position x

 $\langle \mathbf{I}, B_{k,x} \rangle$ is filter response

h(): non-linear rectification

q(I): reference distribution (e.g., uniform or Gaussian noise)

Markov random field, Gibbs distribution

Maximum entropy distribution

Exponential family model

One convolutional layer (given)

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. IJCV, 1998.

FRAME (Filters, Random field, and Maximum Entropy)

$$p_{\theta}(\mathbf{I}) = \frac{1}{Z(\theta)} \exp \left[\sum_{k=1}^{k} \sum_{x \in \mathcal{D}} \theta_k h(\langle \mathbf{I}, B_{k,x} \rangle) \right] q(\mathbf{I})$$

For each pair of texture images, the image on the left is the observed image, and the image on the right is the image randomly sampled from the model.

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. IJCV, 1998.

GRADE (Gibbs Reaction And Diffusion Equation)

$$p_{\theta}(\mathbf{I}) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{I}))$$

$$f_{\theta}(\mathbf{I}) = \sum_{k=1}^{k} \sum_{x \in \mathcal{D}} \theta_k h(\langle \mathbf{I}, B_{k,x} \rangle)$$

Langevin dynamics
$$\mathbf{I}_{t+\Delta t} = \mathbf{I}_t + \frac{\Delta t}{2} \nabla_{\mathbf{I}} f_{\theta}(\mathbf{I}_t) + \sqrt{\Delta t} e_t$$
 $e_t \sim \mathcal{N}(0, I)$

gradient ascent + diffusion (Brownian motion)

 Δt corresponds to step size in implementation

[1] Song-Chun Zhu, and David Mumford. Grade: Gibbs reaction and diffusion equations. ICCV 1998

Inhomogeneous FRAME Model

The inhomogeneous FRAME model [1,2,3] for object patterns

$$p_{\theta}(\mathbf{I}) = \frac{1}{Z(\theta)} \exp \left[\sum_{k=1}^{k} \sum_{x \in \mathcal{D}} \theta_{k,x} h(\langle \mathbf{I}, B_{k,x} \rangle) \right] q(\mathbf{I})$$

HMC Synthesis from the inhomogeneous FRAME model

$$f_{\theta}(\mathbf{I}) = \sum_{k=1}^{k} \sum_{x \in \mathcal{D}} \theta_{k,x} h(\langle \mathbf{I}, B_{k,x} \rangle) \quad q(\mathbf{I}) \propto \exp\left[-\frac{1}{2\sigma^2} ||\mathbf{I}||^2\right]$$

Analysis by synthesis: (use HMC to sample synthesized images)

$$\theta_{k,x}^{(t+1)} = \theta_{k,x}^{(t)} + \eta_t \left[\frac{1}{n} \sum_{i=1}^n h(\langle \mathbf{I}_i, B_{k,x} \rangle) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} h(\langle \tilde{\mathbf{I}}_i, B_{k,x} \rangle) \right]$$

^[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. Inducing Wavelets into Random Fields via Generative Boosting. Journal of Applied and Computational Harmonic Analysis (ACHA) 2015

^[2] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Sparse FRAME Models for Natural Image Patterns. International Journal of Computer Vision (IJCV) 2014

^[3] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Inhomogeneous FRAME Models for Object Patterns. (CVPR) 2014

FRAME Model with VGG Filters

VGG convolutional layer (given), one fully connected layer (learned) Synthesis by Langevin dynamics

[1] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. AAAI 2016

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

EBM Parameterized by Modern Neural Network

Let x be an image defined on image domain D, the Generative ConvNet is a probability distribution defined on image domain 1

$$p(x) = \frac{1}{Z(\theta)} \exp(f_{\theta}(x)) q(x)$$

where q(x) is a reference distribution, e.g., uniform or Gaussian distribution $q(x) = \frac{1}{(2\pi\sigma^2)^{|D|/2}} \exp\left(-\frac{1}{2\sigma^2}\|x\|^2\right)$

- $Z(\theta)$ is the normalizing constant $Z(\theta) = \int_x \exp(f_{\theta}(x))q(x)dx$
- $f_{\theta}(x)$ is parameterized by a ConvNet structure that maps the input image to a scalar. θ contains all the parameters of the ConvNet.

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

Synthesis by Langevin dynamics

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

Kullback-Leibler Divergences in Two Directions

For two probability densities p(x) and q(x), the Kullback-Leibler Divergence (KL-divergence) is defined

$$\mathbb{D}_{\mathrm{KL}}(p||q) = \mathbb{E}_p\left[\log\frac{p(x)}{q(x)}\right] = \int p(x)\log\frac{p(x)}{q(x)}dx$$

The KL-divergence appears in two scenarios:

(1) **Maximum likelihood estimation**: Suppose there are training examples $x_i \sim p_{\text{data}}(x)$ and we want to learn a model $p_{\theta}(x)$. The log-likelihood function is

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x_i) \to \mathbb{E}_{p_{\text{data}}} \left[\log p_{\theta}(x) \right]$$

Thus, for a large n, maximizing the log-likelihood is equivalent to minimizing the KL-divergence

$$\mathbb{D}_{\mathrm{KL}}\left(p_{\mathrm{data}} \parallel p_{\theta}\right) = -\text{ entropy } \left(p_{\mathrm{data}}\right) - \mathbb{E}_{p_{\mathrm{data}}}\left[\log p_{\theta}(x)\right] \doteq -\text{ entropy } \left(p_{\mathrm{data}}\right) - L(\theta)$$

Kullback-Leibler Divergences in Two Directions

(2) **Variational approximation**: Suppose there is a target distribution p_{target} and we know p_{target} up to a normalizing constant, e.g.,

$$p_{\text{target}}(x) = \frac{1}{Z} \exp(f(x))$$

where f(x) is known but $Z = \int \exp(f(x))dx$ is analytically intractable.

Suppose we want to approximate it by a distribution q_{ϕ} . We can find ϕ by minimizing

$$\mathbb{D}_{\mathrm{KL}}\left(q_{\phi} \| p_{\mathrm{target}}\right) = \mathbb{E}_{q_{\phi}}\left[\log q_{\phi}(x)\right] - \mathbb{E}_{q_{\phi}}\left[f(x)\right] + \log Z$$

The above minimization does not require knowledge of $\log Z$.

Kullback-Leibler Divergences in Two Directions

The behaviors of $\mathbb{D}_{\mathrm{KL}}\left(p_{\mathrm{data}} \| p_{\theta}\right)$ in scenario (1) and $\mathbb{D}_{\mathrm{KL}}\left(q_{\phi} \| p_{\mathrm{target}}\right)$ in scenario (2) are different.

In (1), p_{θ} tends to cover all the modes of p_{data} , while in (2) q_{ϕ} tends to focus on some major modes of p_{target} while ignoring the minor modes.

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

Maximum Likelihood Estimation

- Observed data $\{x_1,...,x_n\} \sim p_{\mathrm{data}}(x)$
- Model: $p_{ heta}(x) = \frac{1}{Z(heta)} \exp(f_{ heta}(x))$ $Z(heta) = \int \exp(f_{ heta}(x)) dx$
- Objective function of MLE learning is

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

The gradient of the log-likelihood is

$$L'(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} f_{\theta}(x_i) - \mathbb{E}_{p_{\theta}(x)} [\nabla_{\theta} f_{\theta}(x)]$$

Derivation of gradient of the log-likelihood:

$$\nabla_{\theta} \log p_{\theta}(x) = \nabla_{\theta} f_{\theta}(x) - \nabla_{\theta} \log Z(\theta)$$

where the term $\nabla_{\theta} \log Z(\theta)$ can be rewritten as

$$\nabla_{\theta} \log Z(\theta) = \frac{1}{Z(\theta)} \nabla_{\theta} Z(\theta)$$

$$= \frac{1}{Z(\theta)} \nabla_{\theta} \int \exp(f_{\theta}(x)) dx$$

$$= \frac{1}{Z(\theta)} \int \exp(f_{\theta}(x)) \nabla_{\theta} f_{\theta}(x) dx$$

$$= \int \frac{1}{Z(\theta)} \exp(f_{\theta}(x)) \nabla_{\theta} f_{\theta}(x) dx$$

$$= \int p_{\theta}(x) \nabla_{\theta} f_{\theta}(x) dx$$

$$= \mathbb{E}_{p_{\theta}(x)} [\nabla_{\theta} f_{\theta}(x)]$$

Maximum Likelihood Estimation

Given a set of observed images $\{x_1,...,x_n\} \sim p_{\mathrm{data}}(x)$

Gradient of MLE learning

$$L'(\theta) = \mathbb{E}_{p_{\text{data}}(x)} [\nabla_{\theta} f_{\theta}(x)] - \mathbb{E}_{p_{\theta}(x)} [\nabla_{\theta} f_{\theta}(x)]$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} f_{\theta}(x_i) - \boxed{\frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \nabla_{\theta} f_{\theta}(\tilde{x}_i)}$$

$$\sum_{x} p_{\theta}(x) \nabla_{\theta} f_{\theta}(x)$$

e.g., x is a 100x100 grey-scale image Each pixel \sim [0, 255].

Image space is 256 ^{10,000}!

Intractable!!

Approximated by MCMC $\left\{ \tilde{x}_{1},...,\tilde{x}_{\tilde{n}}\right\} \sim p_{\theta}(x)$

The expectation is analytically intractable and has to be approximated by Markov chain Monte Carlo (MCMC), such as Langevin dynamics or Hamiltonian Monte Carlo (HMC).

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

Gradient-Based MCMC and Langevin Dynamics

For high dimensional data x, sampling from distribution $p_{\theta}(x)=\frac{1}{Z(\theta)}\exp(f_{\theta}(x))$ requires MCMC, such as Langevin dynamics

$$x_{t+\Delta t} = x_t + \frac{\Delta t}{2} \nabla_x f_\theta(x_t) + \sqrt{\Delta t} e_t \qquad e_t \sim \mathcal{N}(0, I)$$
Gradient ascent Brownian motion

As $\Delta t \to 0$ and $t \to \infty$, the distribution of x_t converges to $p_{\theta}(x)$.

 Δt corresponds to step size in implementation.

Different implementations of the synthesis step:

- (i) Persistent chain: runs a finite-step MCMC from the synthesized examples generated from the previous epoch.
- (ii) Contrastive divergence: runs a finite-step MCMC from the observed examples.
- (iii) Non-persistent short-run MCMC: runs a finite-step MCMC from Gaussian white noise.

Analysis by Synthesis

Input: training images $\{x_1,...,x_n\} \sim p_{\text{data}}(x)$

Output: model parameters θ

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

Adversarial Interpretation

The update of θ is based on

$$L'(\theta) \approx \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} f_{\theta}(x_i) - \frac{1}{\tilde{n}} \sum_{i=1}^{n} \nabla_{\theta} f_{\theta}(\tilde{x}_i)$$
$$= \nabla_{\theta} \left[\frac{1}{n} \sum_{i=1}^{n} f_{\theta}(x_i) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} f_{\theta}(\tilde{x}_i) \right]$$

where $\{\tilde{x}_1,...,\tilde{x}_{\tilde{n}}\}$ are the synthesized images generated by the Langevin dynamics

- Define a value function $V(\{\tilde{x}_i\}, \theta) = \frac{1}{n} \sum_{i=1}^n f_{\theta}(x_i) \frac{1}{\tilde{n}} \sum_{i=1}^n f_{\theta}(\tilde{x}_i)$
- $\min_{\{\tilde{x}_i\}} \max_{\theta} V(\{\tilde{x}_i\}, \theta)$ The learning and sampling steps play a minimax game:
- See Part 2 for adversarial contrastive divergence

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet. CVPR, 2017

Mode Seeking and Mode Shifting

Mode seeking and mode shifting

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

Short-Run MCMC for EBM

Model (Representation):
$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp(f_{\theta}(x))$$

MCMC (Generation):
$$x_{t+\Delta t} = x_t + \frac{\Delta t}{2} \nabla_x f_{\theta}(x_t) + \sqrt{\Delta t} e_t$$

$$\nabla_{\theta} L(\theta) = \mathbb{E}_{p_{\text{data}}(x)} [\nabla_{\theta} f_{\theta}(x)] - \mathbb{E}_{p_{\theta}(x)} [\nabla_{\theta} f_{\theta}(x)]$$
$$\approx \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} f_{\theta}(x_i) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \nabla_{\theta} f_{\theta}(\tilde{x}_i)$$

Synthesis by short-run MCMC

A short-run MCMC: Let M_{θ} be the transition kernel of K steps of MCMC toward $p_{\theta}(x)$. For a fixed initial probability p_0 , the resulting marginal distribution of sample x after running K steps of MCMC starting from p_0 is denoted by

$$q_{ heta}(x) = M_{ heta}p_0(x) = \int p_0(z)M_{ heta}(x|z)dz$$
 $z \sim p_0$ $x = M_{ heta}(z,e)$

We can write $x = M_{\theta}(z)$, where we fix $e = (e_t)$,

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019

Short-Run MCMC for EBM

Model distribution (Representation):
$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp(f_{\theta}(x))$$

Short-run MCMC distribution (Generation):

led distribution (Representation): -F-UM MEMC distribution (Generation): ring Ø with short-run MCMC is no longer a maximum likelihood estimator (MLE) but a moment matching mater (MMC) that solves the following estimating equation:

Training θ with short-run MCMC is no longer a maximum likelihood estimator (MLE) but a moment matching estimator (MME) that solves the following estimating equation:

$$\mathbb{E}_{p_{\text{data}}} \left[\nabla_{\theta} f_{\theta}(x) \right] = \mathbb{E}_{q_{\theta}} \left[\nabla_{\theta} f_{\theta}(x) \right]$$
Not $p_{\theta}(x)$!

which is a *perturbation of the maximum likelihood* estimating equation.

Part 2 will present methods to improve sampling and reduce bias due to perturbation, or to avoid sampling.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019

Short-Run MCMC for EBM

Consider a simple model where we only learn top layer weight parameters:

• The blue curve illustrates the model distributions corresponding to different values of parameter.

$$\Theta = \{ p_{\theta}(x) = \exp(\langle \theta, h(x) \rangle) / Z(\theta), \forall \theta \}$$

• The black curve illustrates all the distributions that match $p_{
m data}$ (black dot) in terms of E[h(x)]

$$\Omega = \{ p : \mathbb{E}_p[h(x)] = \mathbb{E}_{p_{\text{data}}}[h(x)] \}$$

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019

Jianwen Xie, Ying Nian Wu

Short-Run MCMC as a Generator Model

Interpolation by short-run MCMC resembling a generator or flow model: The transition depicts the sequence $M_{\theta}(z_{\rho})$ with interpolated noise $z_{\rho} = \rho z_1 + \sqrt{1-\rho^2} z_2$ where $\rho \in [0,1]$ on CelebA (64×64). Left: $M_{\theta}(z_1)$. Right: $M_{\theta}(z_2)$.

Reconstruction by short-run MCMC resembling a generator or flow model: $\min_{z} ||x - M_{\theta}(z)||^2$. The transition depicts $M_{\theta}(z_t)$ over time t from random initialization t = 0 to reconstruction t = 200 on CelebA (64×64). Left: Random initialization. Right: Observed examples.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019

1. Background

- Probabilistic models of images
- Gibbs distribution in statistical physics
- Filters, Random Fields and Maximum Entropy (FRAME) models
- Generative ConvNet: EBM parameterized by modern neural network

- Understanding Kullback-Leibler divergences
- Maximum likelihood learning, analysis by synthesis
- Gradient-based MCMC and Langevin sampling
- Adversarial self-critic interpretations
- Short-run MCMC for synthesis for EBMs
- Equivalence between EBMs and discriminative models

Equivalence between EBM and Discriminative Model

Discriminative model

Let x be an image, and y be a label or annotation of x. Suppose there are C categories. The soft-max classifier is

$$p_{\theta}(y = c \mid x) = \frac{\exp(f_{c,\theta}(x))}{\sum_{c'=1}^{C} \exp(f_{c',\theta}(x))}$$

where $f_{c,\theta}$ is a deep network, and θ denotes all the weight and bias parameters. For different c, the networks $f_{c,\theta}$ may share a common body and only differ in head layer.

The model can be rewritten as

$$p_{\theta}(y = c \mid x) = \frac{1}{Z_{\theta}(x)} \exp(f_{c,\theta}(x))$$
 where $Z_{\theta}(x) = \sum_{c=1}^{C} \exp(f_{c,\theta}(x))$

Equivalence between EBM and Discriminative Model

The discriminative model can be learned by maximum likelihood. The log-likelihood is the average of

$$\log p_{\theta}(y \mid x) = f_{y,\theta}(x) - \log Z_{\theta}(x)$$

The gradient of $\log p_{\theta}(y|x)$ with respect to θ is

$$\nabla_{\theta} \log p_{\theta}(y \mid x) = \nabla_{\theta} f_{y,\theta}(x) - \mathbb{E}_{p_{\theta}(y|x)} \left[\nabla_{\theta} f_{y,\theta}(x) \right]$$

where $\nabla_{\theta} \log Z_{\theta}(x) = \mathbb{E}_{p_{\theta}(y|x)} \left[\nabla_{\theta} f_{y,\theta}(x) \right]$

The MLE minimizes
$$\mathbb{D}_{\mathrm{KL}}(p(y\mid x)\|q(y\mid x)) = \mathbb{E}_{p(x,y)}\left[\log\frac{p(y\mid x)}{q(y\mid x)}\right]$$

A special case is binary classification, where $y \in \{0,1\}$. It is usually assumed that $f_{0,\theta}(x) = 0$, $f_{1,\theta}(x) = f_{\theta}(x)$, so that

$$p_{\theta}(y=1 \mid x) = \frac{1}{1 + \exp\left(-f_{\theta}(x)\right)} = \operatorname{sigmoid}\left(f_{\theta}(x)\right)$$

Equivalence between EBM and Discriminative Model

EBM ↔ discriminative model

A more general version of EBM is of the form of exponential tilting of a reference distribution

$$p_{\theta}(x) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(x)) q(x)$$

where q(x) is a given reference measure, such as uniform measure or Gaussian white noise distribution.

We can treat p_{θ} as the positive distribution, and q(x) the negative distribution.

Let $y \in \{0,1\}$, and the prior probability $p(y=1) = \rho$, so that $p(y=0) = 1 - \rho$.

Let
$$p(x|y = 1) = p_{\theta}(x)$$
, $p(x|y = 0) = q(x)$.

Following the Bayes rule,
$$p(y=1\mid x)=\frac{\exp{(f_{\theta}(x)+b)}}{1+\exp{(f_{\theta}(x)+b)}}$$
 where $b=\log(\rho/(1-\rho))-\log{Z_{\theta}}$

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

Equivalence between EBM and Discriminative Model

More generally, suppose we have C categories, and

$$p_{c,\theta}(x) = \frac{1}{Z_{c,\theta}} \exp(f_{c,\theta}(x)) q(x), c = 1, \dots, C,$$

suppose the prior probability for category c is ρ_c , then

$$p(y=c\mid x) = \frac{\exp\left(f_{c,\theta}(x) + b_c\right)}{\sum_{c=1}^{C} \exp\left(f_{c,\theta}(x) + b_c\right)} \quad \text{ where } b_c = \log \rho_c - \log Z_{c,\theta}.$$

Conversely, if p(y = c|x) is of the form soft-max classifier, then $p_{c,\theta}(x)$ is of the form of exponential titling based on the logit score $f_{c,\theta}(x) + b_c$.

EBM is a generative classifier which can be learned from unlabeled data.

Introspective learning: sequential discriminative learning of EBM.

- [1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
- [2] Lazarow, Justin, Long Jin, and Zhuowen Tu. Introspective neural networks for generative modeling. ICCV. 2017

Part II: Advanced

1. Strategy for Efficient Learning and Sampling

- Multi-stage expanding and sampling for EBMs
- Multi-grid learning and sampling for EBMs
- Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks

- Generative cooperative network
- Divergence triangle
- Latent Space Energy-Based Prior Model
- Flow contrastive estimation of energy-based model

Multistage Coarse-to-Fine Expanding and Sampling

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp(f_{\theta}(x))$$

Approach	Models	FID
VAE	VAE (Kingma & Welling, 2014)	78.41
Autoregressive	PixelCNN (Van den Oord et al., 2016) PixelIQN (Ostrovski et al., 2018)	65.93 49.46
GAN	WGAN-GP (Gulrajani et al., 2017) SN-GAN (Miyato et al., 2018) StyleGAN2-ADA (Karras et al., 2020)	36.40 21.70 2.92
Flow	Glow (Kingma & Dhariwal, 2018) Residual Flow (Chen et al., 2019a) Contrastive Flow (Gao et al., 2020)	45.99 46.37 37.30
Score-based	MDSM (Li et al., 2020) NCSN (Song & Ermon, 2019) NCK-SVGD (Chang et al., 2020)	30.93 25.32 21.95
EBM	Short-run EBM (Nijkamp et al., 2019) Multi-grid (Gao et al., 2018) EBM (ensemble) (Du & Mordatch, 2019) CoopNets (Xie et al., 2018b) EBM+VAE (Xie et al., 2021d)	44.50 40.01 38.20 33.61 39.01
	CF-EBM	16.71

- **Training**: incrementally grow the EBM from a low resolution (coarse model) to a high resolution (fine model) by gradually adding new layers to the energy function.
- Testing: keep the EBM at the highest resolution for image generation using the short-run MCMC sampling.

^[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.

Multistage Coarse-to-Fine Expanding and Sampling

MCMC generative sequences on CelebA (50 Langevin steps)

Generated examples on CelebA-HQ at 512 x 512 resolution

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.

Part II: Advanced

1. Strategy for Efficient Learning and Sampling

- Multi-stage expanding and sampling for EBMs
- Multi-grid learning and sampling for EBMs
- Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks

- Generative cooperative network
- Divergence triangle
- Latent Space Energy-Based Prior Model
- Flow contrastive estimation of energy-based model

Multi-Grid Modeling and Sampling

- Learning models at multiple resolutions (grids)
- Initialize MCMC sampling of higher resolution model from images sampled from lower resolution model
- The lowest resolution is 1x1. The model is histogram

[1] Ruiqi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.

Multi-Grid Modeling and Sampling

Image generation

Inpainting

Feature learning: **EBM** as a generative classifier

Test error rate with # of labeled images	1,000	2,000	4,000
DGN		-	-
Virtual adversarial	24.63	-	-
Auxiliary deep generative model	22.86	-	-
Supervised CNN with the same structure	39.04	22.26	15.24
Multi-grid CD $+$ CNN classifier	19.73	15.86	12.71

[1] Ruiqi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.

Jianwen Xie, Ying Nian Wu

Part II: Advanced

1. Strategy for Efficient Learning and Sampling

- Multi-stage expanding and sampling for EBMs
- Multi-grid learning and sampling for EBMs
- Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks

- Generative cooperative network
- Divergence triangle
- Latent Space Energy-Based Prior Model
- Flow contrastive estimation of energy-based model

Diffusion-Based Modeling and Sampling

- Conditional distribution is easier to sample from than marginal
- Close to unimodal around x_t
- Denoising, recall x_{t-1} with hint x_t

[1] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021

Diffusion-Based Modeling and Sampling

Diffusion recovery likelihood: SOTA synthesized results for pure EBMs.

Table 1: FID and inception scores on CIFAR-10.

Model	FID↓	Inception ↑		
GAN-based				
WGAN-GP (Gulrajani et al., 2017)	36.4	$7.86 \pm .07$		
SNGAN (Miyato et al., 2018)	21.7	$8.22 \pm .05$		
SNGAN-DDLS (Che et al., 2020)	15.42	$9.09 \pm .10$		
StyleGAN2-ADA (Karras et al., 2020)	3.26	$9.74 \pm .05$		
Score-based				
NCSN (Song & Ermon, 2019)	25.32	$8.87 \pm .12$		
NCSN-v2 (Song & Ermon, 2020)	31.75	-		
DDPM (Ho et al., 2020)	3.17	$9.46\pm.11$		
Explicit EBM-conditional				
CoopNets (Xie et al., 2019)	-	7.30		
EBM-IG (Du & Mordatch, 2019)	37.9	8.30		
JEM (Grathwohl et al., 2019)	38.4	8.76		
Explicit EBM				
CoopNets (Xie et al., 2016a)	33.61	6.55		
EBM-SR (Nijkamp et al., 2019b)	-	6.21		
EBM-IG (Du & Mordatch, 2019)	38.2	6.78		
Ours (T6)	9.60	$8.58 \pm .12$		

[1] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021

Diffusion-Based Modeling and Sampling

[1] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021

Part II: Advanced

1. Strategy for Efficient Learning and Sampling

- Multi-stage expanding and sampling for EBMs
- Multi-grid learning and sampling for EBMs
- Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks

- Generative cooperative network
- Divergence triangle
- Latent Space Energy-Based Prior Model
- Flow contrastive estimation of energy-based model

Generator as Approximated Sampler of EBM

Top-down mapping hidden vector z energy $-f_{\theta}(x)$ \uparrow example $x \approx g_{\theta}(z)$ example x (a) Generator model Bottom-up mapping energy $-f_{\theta}(x)$ \uparrow example x

Energy-based model

- Bottom-up network; scalar function, objective/cost/value, critic/teacher
- Easy to specify, hard to sample
- Strong approximation to data density

Generator model

- Top-down network; vector-valued function, sampler/policy, actor/student
- Direct ancestral sampling, implicit marginal density
- Manifold principle (dimension reduction), plus Gaussian white noise
- May not approximate data density as well as EBM

Generator Model

$$z \sim \mathcal{N}(0, I)$$
$$x = g_{\theta}(z) + \epsilon$$

- *x*: high-dimensional example;
- z: low-dimensional latent vector (thought vector, code), follows a simple prior
- g: generation, decoder
- ϵ : additive Gaussian white noise
- Manifold principle: high-dimensional data lie close to a low-dimensional manifold
- Embedding: linear interpolation and simple arithmetic

Generator Model

Model
$$z \sim \mathcal{N}(0,I)$$
 $x = g_{ heta}(z) + \epsilon$

Conditional
$$p_{\theta}(x|z) = \mathcal{N}(g_{\theta}(z), \sigma^2 I)$$

Joint
$$p_{\theta}(x,z) = p(z)p_{\theta}(x|z)$$

$$\log p_{\theta}(x, z) = -\frac{1}{2\sigma^2} \|x - g_{\theta}(z)\|^2 - \frac{1}{2} \|z\|^2 + \text{ constant}$$

Marginal
$$p_{ heta}(x) = \int p_{ heta}(x,z) dz$$

Posterior
$$p_{\theta}(z|x) = p_{\theta}(z,x)/p_{\theta}(x)$$

Maximum Likelihood Learning of Generator Model

Log-likelihood
$$L(\theta) = \frac{1}{n} \sum_{i=1}^n \log p_\theta(x_i)$$
 Gradient
$$\nabla_\theta \log p_\theta(x) = \frac{1}{p_\theta(x)} \nabla_\theta p_\theta(x)$$

$$= \frac{1}{p_\theta(x)} \nabla_\theta \int p_\theta(x,z) dz$$

$$= \frac{1}{p_\theta(x)} \int p_\theta(x,z) \nabla_\theta \log p_\theta(x,z) dz$$

$$= \int \frac{p_\theta(x,z)}{p_\theta(x)} \nabla_\theta \log p_\theta(x,z) dz$$

$$= \int p_\theta(z|x) \nabla_\theta \log p_\theta(x,z) dz$$

$$= \mathbb{E}_{p_\theta(z|x)} [\nabla_\theta \log p(x,z)]$$

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.

Maximum Likelihood Learning of Generator Model

Log-likelihood
$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

Gradient $\nabla_{ heta} \log p_{ heta}(x) = \mathbb{E}_{p_{ heta}(z|x)}[\nabla_{ heta} \log p(x,z)]$

Langevin inference

$$z_{t+\Delta t} = z_t + \frac{\Delta t}{2} \nabla_z \log p_{\theta}(z_t|x) + \sqrt{\Delta t}e_t$$

$$\nabla_z \log p_{\theta}(z|x) = \frac{1}{\sigma^2} (x - g_{\theta}(z)) \nabla_z g_{\theta}(z) - z$$

$$\log p_{\theta}(x, z) = -\frac{1}{2\sigma^2} \|x - g_{\theta}(z)\|^2 - \frac{1}{2} \|z\|^2 + \text{ constant}$$

$$\nabla_{\theta} \log p_{\theta}(x, z) = \frac{1}{\sigma^2} (x - g_{\theta}(z)) \nabla_{\theta} g_{\theta}(z)$$

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.

Two Generative Models

Generator density: implicit integral

$$p_{\theta}(x) = \int p(z)p_{\theta}(x|z)dz$$

EBM density: explicit, unnormalized

$$\pi_{\alpha}(x) = \frac{1}{Z(\alpha)} \exp(f_{\alpha}(x))$$

Data density $p_{\mathrm{data}}(x)$

Cooperative Learning via MCMC Teaching

- Generator is student, EBM is teacher
- Generator generates initial draft, EBM refines it by Langevin
- EBM learns from data as usual
- Generator learns from EBM revision with known z: MCMC teaching
- Avoid (left) or simplify (right) inference
- Generator amortizes EBM's MCMC and jumpstarts EBM's MCMC
- EMB's MCMC refinement serves as **temporal difference** teaching of generator
- Vs GAN: an extra refinement process guided by EBM

^[1] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018

^[2] Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Theoretical Underpinning

Learning EBM by modified contrastive divergence $\mathbb{D}_{\mathrm{KL}}(p_{\mathrm{data}} \parallel \pi_{lpha}) - \mathbb{D}_{\mathrm{KL}}(M_{lpha^{(t)}}p_{ heta^{(t)}} \parallel \pi_{lpha})$

Learning generator by MCMC teaching

$$\mathbb{D}_{\mathrm{KL}}(M_{lpha^{(t)}}p_{ heta^{(t)}}\parallel p_{ heta})$$

^[1] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018

^[2] Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Image Modeling

texture synthesis

scene synthesis

interpolation by the learned generator

image inpainting

- [1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
- [2] Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Cooperative Learning via Variational MCMC Teaching

- To retrieve the latent variable of $\{\tilde{x}_i\}$ provided by EBM in cooperative learning, a tractable approximate inference network $q_{\varphi}(z|x)$ can used to infer $\{\tilde{z}_i\}$ instead of using MCMC inference. Then the learning of $q_{\varphi}(z|x)$ and $p_{\theta}(x|z)$ forms a VAE that treats $\{\tilde{x}_i\}$ as training examples.
- Variational MCMC teaching of the inference and generator networks is a minimization of variational lower bound of the negative log likelihood

$$L(\theta, \varphi) = \sum_{i=1}^{\tilde{n}} \left[\log p_{\theta}(\tilde{x}_i) - \gamma \mathbb{D}_{\mathrm{KL}}(q_{\varphi}(z_i | \tilde{x}_i) || p_{\theta}(z_i | \tilde{x}_i)) \right]$$

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021

Cooperative Learning via Variational MCMC Teaching

Cooperative Learning via Variational MCMC Teaching

Image synthesis

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021

Part II: Advanced

1. Strategy for Efficient Learning and Sampling

- Multi-stage expanding and sampling for EBMs
- Multi-grid learning and sampling for EBMs
- Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks

- Generative cooperative network
- Divergence triangle
- Latent Space Energy-Based Prior Model
- Flow contrastive estimation of energy-based model

Divergence Triangle (without MCMC)

- Integration of variational and adversarial learning
- Generator: variational auto-encoder with an encoder as inference model
- EBM: adversarial contrastive divergence
- Three KL-divergences form a triangle

^[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and inference model. CVPR 2019

^[2] Tian Han, Erik Nijkamp, Linqi Zhou, Bo Pang, Song-Chun Zhu, Ying Nian Wu. Joint training of variational auto-encoder and latent energy-based model. CVPR 2020

Variational Auto-Encoder for Generator

Divergence perturbation

- First KL → maximum likelihood
- Positively perturbed by second KL → from intractable marginal to tractable joint
- VAE: alternating projections

$$\mathbb{D}_{\mathrm{KL}}(p_{\mathrm{data}}(x)||p_{\theta}(x)) + \mathbb{D}_{\mathrm{KL}}(q_{\phi}(z|x)||p_{\theta}(z|x))$$
$$= \mathbb{D}_{\mathrm{KL}}(p_{\mathrm{data}}(x)q_{\phi}(z|x)||p_{\theta}(z,x)) = \mathbb{D}_{\mathrm{KL}}(Q_{\phi}||P_{\theta})$$

[1] Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014.

Adversarial Contrastive Divergence for EBM

Divergence perturbation

- First KL → maximum likelihood
- Negative perturbed by second KL \rightarrow contrastive divergence, canceling intractable $\log Z$ term, adversarial
- A more elegant form of adversarial, a chasing game, related to W-GAN and inverse reinforcement learning
- Generator as an approximate sampler of EBM, actor; EBM criticizes generator vs data, critic

$$\min_{\alpha} \max_{\theta} \left[\mathbb{D}_{\mathrm{KL}}(p_{\mathrm{data}} \| \pi_{\alpha}) - \mathbb{D}_{\mathrm{KL}}(p_{\theta} \| \pi_{\alpha}) \right]$$

Learning gradient of EBM

$$\nabla_{\alpha} \left[\mathbb{E}_{p_{\text{data}}}(f_{\alpha}(x)) - \mathbb{E}_{p_{\theta}}(f_{\alpha}(x)) \right]$$

^[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio. Generative Adversarial Nets. NIPS 2014. [2] Martín Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein Generative Adversarial Networks. ICML 2017.

Divergence Triangle

Three joint distributions

$$Q(z, x) = p_{\text{data}}(x)q_{\phi}(z|x)$$

$$P(z, x) = p(z)p_{\theta}(x|z)$$

$$\Pi(z, x) = \pi_{\alpha}(x)q_{\phi}(z|x)$$

$$\max_{\alpha} \min_{\theta} \min_{\phi} \Delta(\alpha, \theta, \phi)$$

$$\Delta = \mathbb{D}_{\mathrm{KL}}(Q||P) + \mathbb{D}_{\mathrm{KL}}(P||\Pi) - \mathbb{D}_{\mathrm{KL}}(Q||\Pi)$$

- Learning gradients are all tractable
- VAE: P and Q running towards each other
- ACD: P running towards Q, while P chasing P
- Learn EBM without MCMC
- Learn VAE with better synthesis, regularized by EBM

[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and inference model. CVPR 2019.

Image Generation and Interpolation

[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and inference model. CVPR 2019.

Part II: Advanced

1. Strategy for Efficient Learning and Sampling

- Multi-stage expanding and sampling for EBMs
- Multi-grid learning and sampling for EBMs
- Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks

- Generative cooperative network
- Divergence triangle
- Latent Space Energy-Based Prior Model
- Flow contrastive estimation of energy-based model

Latent Space Energy-Based Prior Model

x: observed example. *z*: latent vector.

$$p_{\theta}(x, z) = p_{\alpha}(z)p_{\beta}(x|z)$$

 $p_{\alpha}(z) = \frac{1}{Z(\alpha)} \exp(f_{\alpha}(z))p_{0}(z)$
 $x = g_{\beta}(z) + \epsilon$

- EBM defined on z, standing on a top-down generator.
- Exponential tilting of $p_0(z)$, p_0 is non-informative isotropic Gaussian or uniform prior.
- Empirical Bayes: learning prior from data

Learning by Maximum Likelihood

Log-likelihood

$$L(\theta) = \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

Gradient for a training example

$$\nabla_{\theta} \log p_{\theta}(x) = \mathbb{E}_{p_{\theta}(z|x)} \left[\nabla_{\theta} \log p_{\theta}(x, z) \right]$$
$$= \mathbb{E}_{p_{\theta}(z|x)} \left[\nabla_{\theta} (\log p_{\alpha}(z) + \log p_{\beta}(x|z)) \right]$$

 $f_{lpha}(z)$ z $g_{eta}(z)$

Learning by Maximum Likelihood

Learning EBM prior: matching prior and aggregated posterior

$$\delta_{\alpha}(x) = \nabla_{\alpha} \log p_{\theta}(x)$$

$$= \mathbb{E}_{p_{\theta}(z|x)} [\nabla_{\alpha} f_{\alpha}(z)] - \mathbb{E}_{p_{\alpha}(z)} [\nabla_{\alpha} f_{\alpha}(z)]$$

Learning generator: reconstruction

$$\delta_{\beta}(x) = \nabla_{\beta} \log p_{\theta}(x)$$
$$= \mathbb{E}_{p_{\theta}(z|x)} [\nabla_{\beta} \log p_{\beta}(x|z)]$$

Prior and Posterior Sampling

Langevin dynamics

$$z_0 \sim p_0(z)$$

$$z_{t+\Delta t} = z_t + \frac{\Delta t}{2} \nabla_z \log \pi(z_t) + \sqrt{\Delta t} e_t$$

- z is low-dimensional
- Sampling is efficient and mixes well
- Short-run MCMC for inference and synthesis (e.g., K=20)

Learning and Sampling Algorithm

for t = 0 : T - 1 do

- 1. **Mini-batch**: Sample observed examples $\{x_i\}_{i=1}^m$.
- 2. **Prior sampling**: For each x_i , sample $z_i^- \sim \tilde{p}_{\alpha_t}(z)$ by Langevin sampling from target distribution $\pi(z) = p_{\alpha_t}(z)$, and $s = s_0$, $K = K_0$.
- 3. **Posterior sampling**: For each x_i , sample $z_i^+ \sim \tilde{p}_{\theta_t}(z|x_i)$ by Langevin sampling from target distribution $\pi(z) = p_{\theta_t}(z|x_i)$, and $s = s_1, K = K_1$.
- 4. Learning prior model: $\alpha_{t+1} = \alpha_t + \eta_0 \frac{1}{m} \sum_{i=1}^m [\nabla_{\alpha} f_{\alpha_t}(z_i^+) \nabla_{\alpha} f_{\alpha_t}(z_i^-)].$
- 5. Learning generation model: $\beta_{t+1} = \beta_t + \eta_1 \frac{1}{m} \sum_{i=1}^m \nabla_\beta \log p_{\beta_t}(x_i|z_i^+)$.

Have been applied to (1) image generation, (2) text generation, (3) molecule generation,

(4) trajectory prediction, (5) semi-supervised learning with information bottleneck. See part 3.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Amortizing MCMC Sampling

Divergence perturbation framework

$$\Delta(\theta, \phi, \psi) = \mathbb{D}_{\mathrm{KL}}(p_{\mathrm{data}}(x) || p_{\theta}(x)) + \mathbb{D}_{\mathrm{KL}}(q_{\phi}(z|x) || p_{\theta}(z|x)) - \mathbb{D}_{\mathrm{KL}}(q_{\psi}(z) || p_{\alpha}(z)) + \mathbb{E}_{\mathrm{KL}}(q_{\phi}(z|x) || p_{\theta}(z|x)) - \mathbb{E}_{\mathrm{KL}}(q_{\psi}(z) || p_{\alpha}(z)) + \mathbb{E}_{\mathrm{KL}}(q_{\phi}(z|x) || p_{\phi}(z|x)) + \mathbb{E}_{\mathrm{KL}}(q_{\psi}(z) || p_{\phi}(z)) + \mathbb{E}_{\mathrm{KL}}(q_$$

- Positive phase: posterior sampler, inference model, generalizing variational auto-encoder
- Negative phase: prior sampler, adversarial contrastive divergence, prior MCMC sampling is fast
- Short-run MCMC as approximated sampler

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Image Generation

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Image Generation

Model	ls	VAE	2sVAE	RAE	SRI	SRI (L=5)	Ours
SVHN	MSE	0.019	0.019	0.014	0.018	0.011	0.008
	FID	46.78	42.81	40.02	44.86	35.23	29.44
CIFAR-10	MSE FID	0.057 106.37	0.056 109.77	0.027 74.16	-	- -	0.020 70.15
CelebA	MSE	0.021	0.021	0.018	0.020	0.015	0.013
	FID	65.75	49.70	40.95	61.03	47.95	37.87

Table 1: MSE of testing reconstructions and FID of generated samples for SVHN $(32 \times 32 \times 3)$, CIFAR-10 $(32 \times 32 \times 3)$, and CelebA $(64 \times 64 \times 3)$ datasets.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Short-Run MCMC

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Long-Run MCMC

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Part II: Advanced

1. Strategy for Efficient Learning and Sampling

- Multi-stage expanding and sampling for EBMs
- Multi-grid learning and sampling for EBMs
- Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks

- Generative cooperative network
- Divergence triangle
- Latent Space Energy-Based Prior Model
- Flow contrastive estimation of energy-based model

Noise Contrastive Estimation of EBM

The energy-based model (EBM) is defined as: $p_{ heta}(x) = \frac{1}{Z(\theta)} \exp[f_{ heta}(x)]$

$$p_{\theta}(x) = \exp\left[f_{\theta}(x) - c\right], c = \log Z(\theta)$$
 c is now treated as another free parameter to learn.

 θ can be estimated by maximizing the following objective function:

$$J(\theta) = \mathbb{E}_{p_{\text{data}}} \left[\log \frac{p_{\theta}(x)}{p_{\theta}(x) + q(x)} \right] + \mathbb{E}_{q} \left[\log \frac{q(x)}{p_{\theta}(x) + q(x)} \right]$$

learning by contrast

EBM as a generative classifier

- The first term relies on observed training examples $\{x_i, i = 1, ..., n\}$ from data distribution.
- The second term relies on the generated examples $\{\tilde{x}_i, i = 1, ..., n\}$ from a noise distribution q(x).

[1] Michael Gutmann, Aapo Hyvarinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. AISTATS, 2010

Noise Contrastive Estimation of EBM

$$J(\theta) = \mathbb{E}_{p_{\text{data}}} \left[\log \frac{p_{\theta}(x)}{p_{\theta}(x) + q(x)} \right] + \mathbb{E}_{q} \left[\log \frac{q(x)}{p_{\theta}(x) + q(x)} \right]$$
 (1)

The objective function of NCE connects to **logistic regression** in supervised learning.

Suppose for each training or generated examples, we assign a binary class label y:

- y = 1 if x is from training dataset
- y = 0 if x is generated from q(x).

Equal probabilities for two class labels are assumed: p(y = 1) = p(y = 0) = 0.5, we have

$$p_{\theta}(y=1|x) = \frac{p_{\theta}(x)}{p_{\theta}(x) + q(x)} \coloneqq u(x,\theta)$$

The log-likelihood of logistic regression is given by

$$l(\theta) = \sum_{i=1}^n \log u(x_i; \theta) + \sum_{i=1}^n \log (1 - u(\tilde{x}_i; \theta))$$
 an approximation of Eq (1)

NCE turns MLE to a discriminative problem by introducing a noise distribution q(x)

Flow-Based Model

Flow-Based Model:
$$x=g_{lpha}(z); \ z\sim q_0(z)$$

 q_0 is a known Gaussian noise distribution. g_{α} is an invertible transformations where the log determinants of the Jacobians of the transformations can be explicitly obtained.

- Under the *change of variables*, distribution of x can be expressed as $q_{\alpha}(x) = q_0(g_{\alpha}^{-1}(x)) |\det(\partial g_{\alpha}^{-1}(x)/\partial x)|$
- In the flow-based model, g_{α} is composed of a sequence of transformations $g_{\alpha}=g_{\alpha_1}\circ g_{\alpha_2}\circ...\circ g_{\alpha_m}$. The relation between z and x can be written as $z \leftrightarrow h_1 \leftrightarrow \cdots \leftrightarrow h_{m-1} \leftrightarrow x$.

$$q_{\alpha}(x) = q_0(g_{\alpha}^{-1}(x)) \prod_{i=1}^{m} |\det(\partial h_{i-1}/\partial h_i)|$$

The flow-based model chooses transformations g whose Jacobian is a triangle matrix, so that the computation of determinant becomes $|\det(\partial h_{i-1}/\partial h_i)| = \Pi|\operatorname{diag}(\partial h_{i-1}/\partial h_i)|$

[1] Diederik P. Kingma, Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. NeurIPS 2018.

EBM vs Flow-Based Model

En	ergy-based models:
	Pros: (1) free choice of energy function, can be any CNN structure; (2) direct correspondence to
	discriminator by Bayes rule.
	Cons: MLE learning requires sampling from model with expensive MCMC.
Flo	ow-based models:
	Pros: (1) exact likelihood expression (2) direct generation via ancestral sampling
	Cons : unnatural and carefully designed transformations; less flexible and hard to extract features.

Choice of Noise in NCE

$$J(\theta) = \mathbb{E}_{p_{\text{data}}} \left[\log \frac{p_{\theta}(x)}{p_{\theta}(x) + q(x)} \right] + \mathbb{E}_{q} \left[\log \frac{q(x)}{p_{\theta}(x) + q(x)} \right]$$

The choice of q(x) is a design issue, we expect it to satisfy:

- (1) analytically tractable expression of normalized density;
- (2) easy to draw samples from;
- (3) close to data distribution.

If q(x) is not close to the data distribution, the classification problem would be too easy and would not require p_{θ} to learn much about the modality of the data.

A flow model can be used to transform the noise so that the distribution is closer to data. Flow-based models satisfy (1) and (2).

We can also replace flow-based model by VAE, which satisfies (1) approximately.

Flow Contrastive Estimation of EBM

Joint training of EBM and flow model:

- Iteratively train flow q and EBM p, so that flow can be a stronger contrast for EBM.
- The learning scheme is similar to GAN, where p(x) (EBM) and q(x) (flow) are playing a mini-max game with a unified value function

$$\min_{\alpha} \max_{\theta} V(\theta, \alpha) = \mathbb{E}_{p_{\text{data}}} \left[\log \frac{p_{\theta}(x)}{p_{\theta}(x) + q_{\alpha}(x)} \right] + \mathbb{E}_{z} \left[\log \frac{q_{\alpha}(g_{\alpha}(z))}{p_{\theta}(g_{\alpha}(z)) + q_{\alpha}(g_{\alpha}(z))} \right]$$

where $E_{p_{\text{data}}}$ is approximated by averaging over observed samples $\{x_i, i=1,...,n\}$, while E_Z is approximated by averaging over negative samples $\{\tilde{x}_i, i=1,...,n\}$ drawn from $q_{\alpha}(x)$, with $z_i \sim q_0(z)$.

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Flow Contrastive Estimation of EBM

Interpretation of the objective function

$$\min_{\alpha} \max_{\theta} V(\theta, \alpha) = \mathbb{E}_{p_{\text{data}}} \left[\log \frac{p_{\theta}(x)}{p_{\theta}(x) + q_{\alpha}(x)} \right] + \mathbb{E}_{z} \left[\log \frac{q_{\alpha}(g_{\alpha}(z))}{p_{\theta}(g_{\alpha}(z)) + q_{\alpha}(g_{\alpha}(z))} \right]$$

- max p_{θ} : noise contrastive estimation for p_{θ} : EBM.
- min q_{α} : minimization of Jensen-Shannon divergence for q_{α} : flow
 - If p is close to data distribution, q is approximately minimizing

$$JSD\left(q_{\alpha} \| p_{\text{data}}\right) = KL\left(p_{\text{data}} \| \left(p_{\text{data}} + q_{\alpha}\right) / 2\right) + KL\left(q_{\alpha} \| \left(p_{\text{data}} + q_{\alpha}\right) / 2\right)$$

The learning gradient approximately follows

$$\mathrm{E}_{p_{\mathrm{data}}}\left[\log\left(\left(p_{\theta}+q_{\alpha}\right)/2\right)\right]+\mathrm{KL}\left(q_{\alpha}\|\left(p_{\theta}+q_{\alpha}\right)/2\right)$$
weighted MLE weighted reverse KL (model covering) (model chasing)

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Flow Contrastive Estimation of EBM

Interpretation of the objective function

 \square In GAN, the discriminator D and generator G play a minimax game

$$\min_{G} \max_{D} V(G, D) = \sum_{i=1}^{n} \log [D(x_i)] + \sum_{i=1}^{n} \log [1 - D(G(z_i))]$$

D is learning a likelihood ration $p_{\text{data}}(x)/(p_{\text{data}}(x)+p_G(x))$

 \Box In flow contrastive estimation of EBM, the ratio is explicitly modeled by p and q:

$$\min_{\alpha} \max_{\theta} V(\theta, \alpha) = \sum_{i=1}^{n} \log \left[\frac{p_{\theta}(x_i)}{p_{\theta}(x_i) + q_{\alpha}(x_i)} \right] + \mathbb{E}_{z_i, \forall i} \left\{ \sum_{i=1}^{n} \log \left[\frac{q_{\alpha}(g_{\alpha}(z_i))}{p_{\theta}(g_{\alpha}(z_i)) + q_{\alpha}(g_{\alpha}(z_i))} \right] \right\}$$

 \square q as an actor (policy), p as critic (value).

Image Synthesis

Better synthesized results for flow; better test log-likelihood

MLE learning

Joint training

MLE learning

Joint training

SVHN

Cifar-10

FID score

Method	SVHN	CIFAR-10	CelebA
VAE [34]	57.25	78.41	38.76
DCGAN [58]	21.40	37.70	12.50
Glow [32]	41.70	45.99	23.32
FCE (Ours)	20.19	37.30	12.21

^[1] Ruigi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Semi-Supervised Classification Learning

- EBM as a generative classifier which can be learned from unlabeled data
- A probabilistic generative framework of contrastive self-supervised learning

SSL on SVHN dataset

	# of labeled data			
Method	500	1000		
SWWAE [76]		23.56		
Skip DGM [46]		$16.61\ (\pm0.24)$		
Auxiliary DGM [46]		22.86		
GAN with FM [61]	$18.44 (\pm 4.8)$	$8.11 (\pm 1.3)$		
VAT-Conv-small [49]		$6.83\ (\pm0.24)$		
on Conv-small used in [61, 49]				
FCE-init	$9.42 (\pm 0.24)$	$8.50\ (\pm0.26)$		
FCE	7.05 (± 0.28)	6.35 (± 0.12)		
Π model [39]	$7.05~(\pm 0.30)$	5.43 (±0.25)		
VAT-Conv-large [49]	$^{\dagger}8.98~(\pm0.26)$	$5.77 (\pm 0.32)$		
Mean Teacher [66]	$5.45\ (\pm0.14)$	$5.21\ (\pm0.21)$		
Π model* [39]	$6.83 (\pm 0.66)$	$4.95\ (\pm0.26)$		
Temporal ensembling* [39]	$5.12 (\pm 0.13)$	$4.42 (\pm 0.16)$		
on Conv-large used in [39, 49]]			
FCE-init	$8.86 (\pm 0.26)$	$7.60 (\pm 0.23)$		
FCE	$6.86\ (\pm0.18)$	$5.54\ (\pm0.18)$		
FCE + VAT	4.47 (± 0.23)	3.87 (± 0.14)		

^[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Image Synthesis

- [1] Jianwen Xie *, Yang Lu *, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML 2016
- [2] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021
- [3] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021

Image Inpainting

One-Sided Image-to-Image Translation

$$x \Rightarrow y$$

$$p(y) \propto \exp(f(y))$$

$$y_{t+\Delta t} = y_t + \frac{\Delta t}{2} \nabla_y f(y_t) + \sqrt{\Delta t} e_t \qquad y_0 = x \sim p_{\text{data}}(x)$$

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Spatial-Temporal Generative ConvNet: EBMs for Videos

Energy-based Spatial-Temporal Generative ConvNets:

The spatial-temporal generative ConvNet is an energy-based model defined on the image sequence (video), i.e.,

$$\mathbf{I} = (\mathbf{I}(x,t), x \in D, t \in T),$$
 $p_{\theta}(\mathbf{I}) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{I})) q(\mathbf{I})$

where $f(\mathbf{I}; \theta)$ is a bottom-up spatial-temporal ConvNet structure that maps the video to a scalar. q is the Gaussian white noise model

$$q(\mathbf{I}) = \frac{1}{(2\pi\sigma^2)^{|\mathcal{D}\times\mathcal{T}|/2}} \exp\left[-\frac{1}{2\sigma^2} \|\mathbf{I}\|^2\right]$$

MLE update formula
$$heta_{t+1} = heta_t + \eta_t \left[rac{1}{n} \sum_{i=1}^n
abla_{ heta} f_{ heta}(\mathbf{I}_i) - rac{1}{ ilde{n}} \sum_{i=1}^{ ilde{n}}
abla_{ heta} f_{ heta}(ilde{\mathbf{I}}_i)
ight]$$

^[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017

^[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Energy-Based Video Synthesis

Generating dynamic textures with both spatial and temporal stationarity

spatial-temporal filters are convolutional in both spatial and temporal domains.

For each example, the first one is the observed video, the other three are the synthesized videos.

^[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017

^[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Energy-Based Video Synthesis

Generating dynamic textures with only temporal stationarity

The 2nd layer is a spatially fully connected layer

For each example, the first one is the observed video, and the other three are the synthesized videos.

^[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017

^[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Energy-Based Inpainting

Q: Can we learn from incomplete training data?

Unsupervised recovery

A: Learning + synthesizing (new example) + recovering (training example)

Recovery algorithm involves two Langevin dynamics:

- 1. One starts from white noise for synthesis to compute the gradient. (the output is $\tilde{\mathbf{I}}_i$)
- 2. The other starts from the occluded data to recover the missing data. (the putput is $\hat{\mathbf{I}}_i$)

Learning step
$$\theta_{t+1} = \theta_t + \eta_t \left[\frac{1}{n} \sum_{i=1}^n \nabla_{\theta} f_{\theta}(\mathbf{I}_i) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \nabla_{\theta} f_{\theta}(\tilde{\mathbf{I}}_i) \right]$$

^[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017

^[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Energy-Based Inpainting

Learn the model from incomplete data

(1) Video recovery

(a) Single region masks

training

(b) 50% missing frames

(c) 50% salt and pepper masks

(2) Background Inpainting

original

training

inpainted

original

training

- [1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
- [2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Generative VoxelNet: Energy-Based Model on 3D Voxels

Energy-based Generative VoxelNet:

3D deep convolutional energy-based model defined on the volumetric data x:

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp(f_{\theta}(x))$$

where $f(Y; \theta)$ is a bottom-up 3D ConvNet structure, and q(Y) is the Gaussian reference distribution. The MLE iterates:

Sampling:
$$x_{t+\Delta t} = x_t + \frac{\Delta t}{2} \nabla_x f_{\theta}(x_t) + \sqrt{\Delta t} e_t$$

Learning:
$$\theta_{t+1} = \theta_t + \eta_t \left[\frac{1}{n} \sum_{i=1}^n \nabla_\theta f_\theta(x_i) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \nabla_\theta f_\theta(\tilde{x}_i) \right]$$

Energy output

^[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018

^[2] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

3D Shape Generation

Model	Inception score
3D ShapeNets [10]	4.126±0.193
3D GAN [17]	8.658 ± 0.450
3D VAE [79]	11.015±0.420
3D WINN [36]	8.810 ± 0.180
Primitive GAN [34]	11.520 ± 0.330
generative VoxelNet (ours)	11.772 ± 0.418

Inception Score

Each row displays one experiment, where the first three 3D objects are observed, column 4-9 are synthesized, the last 4 are the nearest neighbors retrieved from the training set.

^[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018

^[2] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

High Resolution 3D Generation via Multi-Grid Sampling

Multi-grid modeling:

A pyramid of Generative VoxelNets

A pyramid of observed examples

Multi-grid sampling procedure from low resolution to high resolution:

[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

High Resolution 3D Generation via Multi-Grid Sampling

Synthesized example at each grid is obtained by 20 steps Langevin sampling initialized from the synthesized examples at the previous coarser grid, starting from the $1 \times 1 \times 1$ grid.

[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

3D Shape Recovery

• **Task**: Given any corrupted 3D shape, whose indices of corrupted voxels are known, recover the corruption.

• **Solution**: Recover the 3D object by sampling on conditional generative VoxelNet: $p(x_M|x_{\widetilde{M}};\theta)$ where M contains indices of corruption, \widetilde{M} are indices of uncorrupted voxels, and $x_M/x_{\widetilde{M}}$ are the corrupted / uncorrupted parts of the shape.

Sampling: $\tilde{x} \sim p(x_M | x_{\tilde{M}}; \theta)$

- (1) Starting from the corrupted x_i' , run K steps of Langevin dynamics to obtain \tilde{x}_i
- (2) Fixing the uncorrupted parts of voxels $\tilde{x}_i(\tilde{M}_i) \leftarrow x_i(\tilde{M}_i)$

Learning by recovery

$$\theta_{t+1} = \theta_t + \eta_t \left[\frac{1}{n} \sum_{i=1}^n \nabla_{\theta} f_{\theta}(x_i) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \nabla_{\theta} f_{\theta}(\tilde{x}_i) \right]$$

^[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018

^[2] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

3D Shape Recovery

^[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018

^[2] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

3D Super Resolution

We perform 3D super resolution on a low-resolution 3D objects by sampling from

$$p(x_{high}|x_{low};\theta).$$

It is learned from fully observed training pairs $\{(x_{high}, x_{low})\}$. In each iteration, we first up-scale x_{low} by expanding each voxel into a $d \times d \times d$ blocks (d is the scaling ratio) of constant intensity to obtain an upscaled version x'_{high} of x_{low} and then run Langevin dynamics staring from x'_{high} to obtain x_{high} .

^[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018

^[2] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

3D Shape Classification

- Train a single energy-based generative VoxelNet model on all categories of the training set of ModelNet10 dataset in an unsupervised manner.
- 2. Use the model (i.e., network) as a feature extractor and train a multinomial logistic regression classifier from labeled data based on the extracted feature vectors for classification.

Method	Accuracy
Geometry Image [57]	88.4%
PANORAMA-NN [59]	91.1%
ECC [61]	90.0%
3D ShapeNets [10]	83.5%
DeepPano [58]	85.5%
SPH [56]	79.8%
LFD [55]	79.9%
VConv-DAE [62]	80.5%
VoxNet [16]	92.0%
3D-GAN [17]	91.0%
3D-WINN [36]	91.9%
Primitive GAN [34]	92.2%
generative VoxelNet (ours)	92.4%

A comparison of classification accuracy on the testing data of ModelNet10 using the one-versus-all rule

^[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018

^[2] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Generative PointNet: EBM for Unordered Point Clouds

Energy-Based Generative PointNet:

$$p_{\theta}(X) = \frac{1}{Z(\theta)} \exp f_{\theta}(X) p_0(X)$$

where $X = \{x_k, k = 1, ..., M\}$ is a point cloud that contains M unordered points, and $Z(\theta) = \int \exp f_{\theta}(X) \, p_0(X)$ is the intractable normalizing constant. $p_0(X)$ is reference gaussian distribution. $f_{\theta}(X)$ is a scoring function that maps X to a score and is parameterized by a bottom-up input-permutation-invariant neural network.

h is parameterized by a multilayer perceptron network and g is a symmetric function, which is an average pooling function followed by a multilayer perceptron network.

Point Cloud Generation

3D point cloud synthesis by short-run MCMC sampling from the learned model

Point Cloud Reconstruction

- Since the short-run MCMC is not convergent, the sampled X is highly dependent to its initialization z. We can regard the short-run MCMC procedure as a K-layer flow-based generator model, or a latent variable model with z being the continuous latent variable: $\tilde{X} = M_{\theta}(z, e)$, $z \sim p_0(z)$
- We reconstruct X by finding z to minimize the reconstruction error $L(z) = \|X M_{\theta}(z)\|^2$, where $M_{\theta}(z)$ is a learned short-run MCMC generator.

Ground Truth

Energy-based Generative PointNet

PointFlow

Point Cloud Interpolation

Linear Interpolation on latent space. Reconstruction from these latent Z

$$z_{\rho} = (1 - \rho)z_1 + \rho z_2$$
, $\rho \in [0,1]$

 $X = M_{\theta}(Z)$

Point Cloud Classification

Unsupervised generative feature learning + supervised SVM learning

Results on ModelNet10

Method	Accuracy
SPH [18]	79.8%
LFD [4]	79.9%
PANORAMA-NN [33]	91.1%
VConv-DAE [34]	80.5%
3D-GAN [38]	91.0%
3D-WINN [16]	91.9%
3D-DescriptorNet [44]	92.4%
Primitive GAN [19]	92.2%
FoldingNet [51]	94.4%
1-GAN [1]	95.4%
PointFlow [50]	93.7%
Ours	93.7%

Robustness test

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

$$p_{\theta}(x) = \frac{1}{Z_{\theta}} \exp[f_{\theta}(x)]$$
Energy-Based Model

Inverse Optimal Control

- Use cost function as the energy function in EBM probability distribution of trajectories;
- Perform conditional sampling as optimal control;
- Take advantage of known dynamic function and do back-propagation through time;
- Define joint distribution for multi-agent trajectory predictions.

- Optimal Control: finite horizon control problem for discrete time $t \in \{1, ..., T\}$.
 - 1. states $\mathbf{x} = (x_t, t = 1, ..., T)$ {longitude, latitude, speed, heading angle, acceleration, steering angle}
 - 2. control $\mathbf{u} = (u_t, t = 1, ..., T)$ {change of acceleration, change of steering angle}
 - 3. The dynamics is deterministic, $x_t = f(x_{t-1}, u_t)$, where f is given.
 - 4. The trajectory is $(\mathbf{x}, \mathbf{u}) = (x_t, u_t, t = 1, ..., T)$.
 - 5. The environment condition is *e*.
 - 6. The recent history $h = (x_t, u_t, t = -k, ..., 0)$
 - 7. The cost function is $C_{\theta}(\mathbf{x}, \mathbf{u}, e, h)$ where θ are parameters that define the cost function
- The problem of inverse optimal control is to learn θ from expert demonstrations

$$D = \{(\mathbf{x}_i, \mathbf{u}_i, e_i, h_i), i = 1, ..., n\}.$$

Energy-Based Model for Inverse Optimal Control:

$$p_{\theta}(\mathbf{u} \mid e, h) = \frac{1}{Z_{\theta}(e, h)} \exp\left[-C_{\theta}(\mathbf{x}, \mathbf{u}, e, h)\right]$$

where $Z_{\theta}(e,h) = \int \exp\left[-C_{\theta}(\mathbf{x},\mathbf{u},e,h)\right] d\mathbf{u}$ is the normalizing constant.

- \mathbf{x} is determined by \mathbf{u} according to the deterministic dynamics.
- The cost function $C_{\theta}(\mathbf{x}, \mathbf{u}, e, h)$ serves as the energy function.
- For expert demonstrations D, \mathbf{u}_i are assumed to be random samples from $p_{\theta}(\mathbf{u}|e,h)$, so that \mathbf{u}_i tends to have low cost $C_{\theta}(\mathbf{x},\mathbf{u},e,h)$.

Parameters θ can be learned via MLE from expert demonstrations $D = \{(\mathbf{x}_i, \mathbf{u}_i, e_i, h_i), i = 1, ..., n\}$.

The loglikelihood
$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta} \left(\mathbf{u}_{i} \mid e_{i}, h_{i} \right)$$
 The gradient
$$L'(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{p_{\theta}\left(\mathbf{u} \mid e_{i}, h_{i}\right)} \left(\frac{\partial}{\partial \theta} C_{\theta} \left(\mathbf{x}, \mathbf{u}, e_{i}, h_{i} \right) \right) - \frac{\partial}{\partial \theta} C_{\theta} \left(\mathbf{x}_{i}, \mathbf{u}_{i}, e_{i}, h_{i} \right) \right]$$

$$\hat{L}'(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\partial}{\partial \theta} C_{\theta} \left(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{u}}_{i}, e_{i}, h_{i} \right) - \frac{\partial}{\partial \theta} C_{\theta} \left(\mathbf{x}_{i}, \mathbf{u}_{i}, e_{i}, h_{i} \right) \right]$$

 $(\tilde{\mathbf{x}}_i, \tilde{\mathbf{u}}_i)$ can be either sampled through Langevin dynamics or predicted through optimization method (that is, seek the minimum cost). During sampling, the trajectory will be roll-out every step by dynamic function and perform back-propagation through time.

Dataset: NGSIM-US101

- Collected from camera on US101 highway.
- 10 frame as history and 40 frames to predict. (0.1s / frame)
- 831 total scenes with 96,512 5-second vehicle trajectories.

■ Ground Truth; ■ EBM; ■ GAIL; ■ Other Vehicle; ■ Lane.

Multi-Agent Prediction

There are K agents: States $\mathbf{X} = (\mathbf{x}^k, k = 1, 2, ..., K)$, and controls $\mathbf{U} = (\mathbf{u}^k, k = 1, 2, ..., K)$

All agents share the same dynamic function, $x_t^k = f(x_{t-1}^k, u_t^k)$.

The overall cost function $C_{\theta}(\mathbf{X}, \mathbf{U}, e, h) = \sum_{k=0}^{K} C_{\theta}(\mathbf{x}^{k}, \mathbf{u}^{k}, e, h^{k})$

$$p_{\theta}(\mathbf{U} \mid e, h) = \frac{1}{Z_{\theta}(e, h)} \exp\left[-C_{\theta}(\mathbf{X}, \mathbf{U}, e, h)\right]$$

Multi-agent prediction on NGSIM US101 dataset (Grey: Lane; Red: Ground truth; Green: Prediction)

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

External learning v.s. Internal Learning

External learning:

Learn a distribution of images within a set of natural images

Internal learning:

Learn an internal distribution of patches within a single natural image

Patchwise Generative ConvNet for Internal Learning

• A pyramid of EBMs, $\{p_{\theta_s}(\mathbf{I}^{(s)}), s=0,...,S\}$, trained against a pyramid of images of different scales $\{\mathbf{I}^{(s)}, s=0,...,S\}$.

$$\{p_{\theta}(\mathbf{I}^{(s)}) = \frac{1}{Z(\theta_s)} \exp\left[f_{\theta_s}(\mathbf{I}^{(s)})\right], s = 0, ..., S\}$$

- Each $p_{\theta_s}(\mathbf{I}^{(s)})$ is responsible to synthesize images based on the patch distribution learned from the image $\mathbf{I}^{(s)}$ at the corresponding scale s
- For s = 0, ..., S

$$\frac{\partial \mathcal{L}(\theta_s)}{\partial \theta_s} = \frac{\partial}{\partial \theta_s} f_{\theta_s} \left(\mathbf{I}^{(s)} \right) - \frac{1}{n} \sum_{i=1}^n \left[\frac{\partial}{\partial \theta_s} f_{\theta_s} \left(\tilde{\mathbf{I}}_i^{(s)} \right) \right]$$

where a pyramid of synthesis $\{\tilde{\mathbf{I}}^{(s)}, s=1,...,S\}$ are obtained via sequential multi-scale sequential sampling.

Multi-Scale Sampling

multi-scale sequential sampling process starting from a randomly initialized Z

Unconditional Image Generation Results

Random Image Samples. Each row demonstrates a single training example and multiple synthesis results of various aspect ratios.

Influence of different numbers of scales

Single Image Super Resolution

Super-Resolution results from BSD100. The first column shows the initial image used for training.

Image Manipulation

Image harmonization

Paint to Image

Image Editing

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Unconditioned Image, Video, 3D Shape Synthesis

^[1] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018

^[2] Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Conditional Learning as Problem Solving

- Let x be the D-dimensional output signal of the target domain, and c be the input signal of the source domain, where "c" stands for "condition". c defines the problem, and x is the solution.
- The goal is to learn the conditional distribution p(x | c) of the target signal (solution) x given the source signal c (problem) as the condition. p(x | c) will learn from the training dataset of the pairs $\{(x_i, c_i), i = 1, ..., n\}$.
- Examples: $c \Rightarrow x$

Label-to-image synthesis

Image inpainting

Image-to-image synthesis

Fast-Thinking and Slow-Thinking

The cooperative learning scheme is extended to the conditional learning problem by jointly training a conditional energy-based model and a conditional generator model.

They represent (problem c, solution x) pair from two different perspectives:

- The conditional energy-based model is of the following form $p_{\theta}(x|c) = \frac{1}{Z(c,\theta)} \exp[f_{\theta}(x,c)]$ solve a problem via slow-thinking (iterative): $x_{t+\Delta t} = x_t + \frac{\Delta t}{2} \nabla_x f_{\theta}(x_t,c) + \sqrt{\Delta t} e_t$
- The conditional generator is of the following form $x=g_{\alpha}(z,c)+\epsilon, z\sim \mathcal{N}(0,I_d), \epsilon\sim \mathcal{N}(0,\sigma^2I_D)$ solve a problem via fast-thinking (non-iterative): $x=g_{\alpha}(z,c)$

Fast-thinking v.s. Slow-thinking

Cooperative Conditional Learning

fast-thinking initializer

$$z \sim \mathcal{N}(0, I); x = g_{\alpha}(z, c) + \epsilon; \epsilon \sim \mathcal{N}(0, \sigma^{2}I)$$

slow-thinking solver

$$p_{\theta}(x|c) = \frac{1}{Z(c,\theta)} \exp[f_{\theta}(x,c)]$$
$$x_{t+\Delta t} = x_t + \frac{\Delta t}{2} \nabla_x f_{\theta}(x_t,c) + \sqrt{\Delta t} e_t$$

Diagram of fast thinking and slow thinking conditional learning

Label-to-Image Generation

Image generation conditioned on class label

Image-to-Image Generation

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Unsupervised Image-to-Image Translation

- Image-to-image translation has shown its importance in computer vision and computer graphics.
- Unsupervised cross-domain translation is more applicable than supervised cross-domain translation, because different domains of independent data collections are easily accessible.

- Two domians $\{x_i; i=1,...,n_x\} \in \mathcal{X}$ and $\{y_i; i=1,...,n_y\} \in \mathcal{Y}$ without instance-level correspondence
- Cycle-Consistent Cooperative Network (CycleCoopNets) simultaneously learn and align two EBM-generator pairs

$$\mathcal{Y} \to \mathcal{X} : \{ p(x; \theta_{\mathcal{X}}), G_{\mathcal{Y} \to \mathcal{X}}(y; \alpha_{\mathcal{X}}) \}$$
$$\mathcal{X} \to \mathcal{Y} : \{ p(y; \theta_{\mathcal{Y}}), G_{\mathcal{X} \to \mathcal{Y}}(x; \alpha_{\mathcal{Y}}) \}$$

$$p(x; \theta_{\mathcal{X}}) = \frac{1}{Z(\theta_{\mathcal{X}})} \exp[f(x; \theta_x)] p_0(x)$$
$$p(y; \theta_{\mathcal{Y}}) = \frac{1}{Z(\theta_{\mathcal{Y}})} \exp[f(y; \theta_x)] p_0(y)$$

where each pair of models is trained via MCMC teaching to form a one-way translation. We align them by enforcing mutual invertibility, i.e.,

$$x_{i} = G_{\mathcal{Y} \to \mathcal{X}} (G_{\mathcal{X} \to \mathcal{Y}} (x_{i}; \alpha_{\mathcal{Y}}); \alpha_{\mathcal{X}})$$
$$y_{i} = G_{\mathcal{X} \to \mathcal{Y}} (G_{\mathcal{Y} \to \mathcal{X}} (y_{i}; \alpha_{\mathcal{X}}); \alpha_{\mathcal{Y}})$$

Alternating MCMC Teaching

- → MCMC/Langevin

 LVM update

 LVM in domain y

 EBM in domain y
- o translated example in domain y
- o observed example in domain y

Step (1): cross-domain mapping

$$\{x_{i} \sim p_{\text{data}}(x)\}_{i=1}^{\tilde{n}} \{\hat{y}_{i} = G_{\mathcal{X} \to \mathcal{Y}}(x_{i}; \alpha \mathcal{Y})\}_{i=1}^{\tilde{n}}$$
$$\{y_{i} \sim p_{\text{data}}(y)\}_{i=1}^{\tilde{n}} \{\hat{x}_{i} = G_{\mathcal{Y} \to \mathcal{X}}(y_{i}; \alpha_{\mathcal{X}})\}_{i=1}^{\tilde{n}}$$

Starting from $\{\hat{y}_i\}_{i=1}^{\tilde{n}}$, run l steps of Langevin revision to obtain $\{\tilde{y}_i\}_{i=1}^{\tilde{n}}$ Starting from $\{\hat{x}_i\}_{i=1}^{\tilde{n}}$, run l steps of Langevin revision to obtain $\{\tilde{x}_i\}_{i=1}^{\tilde{n}}$

Alternating MCMC Teaching

Step (2): density shifting

Given
$$\{x\}_{i=1}^{\tilde{n}}$$
 and $\{\tilde{x}\}_{i=1}^{\tilde{n}}$, update $\theta_{\mathcal{X}}^{(t+1)} = \theta_{\mathcal{X}}^{(t)} + \gamma_{\theta_{\mathcal{X}}} \Delta\left(\theta_{\mathcal{X}}^{(t)}\right)$
Given $\{y\}_{i=1}^{\tilde{n}}$ and $\{\tilde{y}\}_{i=1}^{\tilde{n}}$, update $\theta_{\mathcal{Y}}^{(t+1)} = \theta_{\mathcal{Y}}^{(t)} + \gamma_{\theta_{\mathcal{Y}}} \Delta\left(\theta_{\mathcal{Y}}^{(t)}\right)$

Alternating MCMC Teaching

true distribution

EBM update

LVM in domain x

EBM in domain x

- x translated example in domain x
- x observed example in domain x

→ MCMC/Langevin

LVM update

- ■► LVM in domain y
- EBM in domain y
- translated example in domain y
- observed example in domain y

Step (3): mapping shifting with cycle consistency

$$L_{\text{teach}} (\alpha_{\mathcal{X}}) = \sum_{i=1}^{\tilde{n}} \|\tilde{x}_i - G_{\mathcal{Y} \to \mathcal{X}} (y_i, \alpha_{\mathcal{X}})\|^2$$

$$L_{\text{teach}}(\alpha_{\mathcal{Y}}) = \sum_{i=1}^{n} \|\tilde{y}_i - G_{\mathcal{X} \to \mathcal{Y}}(x_i, \alpha \mathcal{Y})\|^2$$

$$L_{\text{cycle}}\left(\alpha_{\mathcal{X}}, \alpha_{\mathcal{Y}}\right) = \sum_{i=1}^{n} \left\|x_{i} - G_{\mathcal{Y} \to \mathcal{X}}\left(G_{\mathcal{X} \to \mathcal{Y}}\left(x_{i}; \alpha_{\mathcal{Y}}\right); \alpha_{\mathcal{X}}\right)\right\|^{2} + \sum_{i=1}^{n} \left\|y_{i} - G_{\mathcal{X} \to \mathcal{Y}}\left(G_{\mathcal{Y} \to \mathcal{X}}\left(y_{i}; \alpha_{\mathcal{X}}\right); \alpha_{\mathcal{Y}}\right)\right\|^{2}$$

Unsupervised Image-to-Image Translation

Collection style transfer from photo realistic images to artistic styles

Season transfer

Part III: Applications

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

3. Latent Space Energy-Based Model

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

- The *CycleCoopNets* framework can be generalized to learning a translation between two domains of sequences where paired examples are unavailable.
- For example, given an image sequence of Donald Trump's speech, we can translate it to an image sequence of Barack Obama, where the content of Donald Trump is transferred to Barack Obama but the speech is in Donald Trump's style.
- Such an appearance translation and motion style preservation framework may have a wide range of applications in video manipulation.

output

Two medications are made to adapt the *CycleCoopNets* to image sequence translation.

(1) learn a recurrent model in each domain to predict future image frame given the past image frames in a sequence. Let R_χ and R_y denote recurrent models for domain $\mathcal X$ and $\mathcal Y$ respectively. We learn R_χ and R_y by minimizing

$$L_{\text{rec}}(R_{\mathcal{X}}) = \sum_{t} \|x_{t+k+1} - R_{\mathcal{X}}(x_{t:t+k})\|^{2}$$

$$L_{\text{rec}}(R_{\mathcal{Y}}) = \sum_{t} \|y_{t+k+1} - R_{\mathcal{Y}}(y_{t:t+k})\|^{2}$$

where
$$x_{t:t+k} = (x_t, ..., x_{t+k})$$
 and $y_{t:t+k} = (y_t, ..., y_{t+k})$

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation. AAAI 2021

(2) With the recurrent models, we modify the loss for G to take into account spatial-temporal information

$$L_{\text{st}}(G_{\mathcal{X}\to\mathcal{Y}}, R_{\mathcal{Y}}, G_{\mathcal{Y}\to\mathcal{X}})$$

$$= \sum_{t} \|x_{t+k+1} - G_{\mathcal{Y}\to\mathcal{X}}(R_{\mathcal{Y}}(G_{\mathcal{X}\to\mathcal{Y}}(x_{t:t+k})))\|^{2}$$

$$L_{\text{st}}(G_{\mathcal{Y}\to\mathcal{X}}, R_{\mathcal{X}}, G_{\mathcal{X}\to\mathcal{Y}})$$

$$= \sum_{t} \|y_{t+k+1} - G_{\mathcal{X}\to\mathcal{Y}}(R_{\mathcal{X}}(G_{Y\to\mathcal{X}}(y_{t:t+k})))\|^{2}$$

The final objective of *G* and *R* is given by

$$\min_{G,R} L(G,R) = L_{\text{rec}}(R_{\mathcal{X}}) + L_{\text{rec}}(R_{\mathcal{Y}}) + \lambda_1 L_{\text{teach}}(G_{\mathcal{Y} \to \mathcal{X}})$$
$$+ \lambda_1 L_{\text{teach}}(G_{\mathcal{X} \to \mathcal{Y}}) + \lambda_2 L_{\text{st}}(G_{\mathcal{X} \to \mathcal{Y}}, R_{\mathcal{Y}}, G_{\mathcal{Y} \to \mathcal{X}})$$
$$+ \lambda_2 L_{\text{st}}(G_{\mathcal{Y} \to \mathcal{X}}, R_{\mathcal{X}}, G_{\mathcal{X} \to \mathcal{Y}})$$

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation. AAAI 2021

Image sequence translation

- (a) translate Barack Obama's facial motion to Donald Trump.
- (b) translate from the blooming of a violet flower to a yellow flower.
- (c) translate the blooming of a purple flower to a red flower.

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation. AAAI 2021

Jianwen Xie, Ying Nian Wu

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Latent Space Energy-Based Prior Model

x: observed example. *z*: latent vector.

$$p_{ heta}(x,z) = p_{lpha}(z)p_{eta}(x|z)$$
 $p_{lpha}(z) = rac{1}{Z(lpha)} \exp(f_{lpha}(z))p_0(z)$ $x = g_{eta}(z) + \epsilon$

- Standing on a top-down generator model.
- Correcting non-informative prior p_0 .
- Captures regularities/rules/constraints or objective/cost/value probabilistically in latent space.
- Sampling in latent space is efficient and mixes well.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Text Generation

RNN/auto-regressive generation model for text.

z is a thought vector about the whole sentence and controls the generation of the sentence at each time step.

$$p_{\beta}(x|z) = \prod_{t=1}^{T} p_{\beta}(x^{(t)}|x^{(1)}, ..., x^{(t-1)}, z)$$

judge in <unk> was not

west virginia bank <unk> which has been under N law took effect of october N

mr. peterson N years old could return to work with his clients to pay

iras m ustbe

anticipating bonds tied to the $im\ perial\ com\ pany$'s revenue of $\ N\ m$ illion today

m any of these N funds in the industrial average rose to N N from N N N

fund obtaining the the

ford 's latest m ove is expected to reach an agreem ent in principle for the sale of its loan operations

 $w \ all \ street \ has \ been \ shocked \ overby \ the \ m \ erger \ of \ new \ york \ co. \ a \ w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ said \ it w \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ orld - w \ ide \ financial \ board \ of \ the \ com \ panies \ orld - w \ ide \ orld - w$

n't seek strategic alternatives to the brokerage industry 's directors

Table 3: Transition of a M arkov chain initialized from $p_0(z)$ towards $\tilde{p}_{e'}(z)$. Top: Trajectory in the PTB data-space. Each panel contains a sample for K_0^0 2 $\{0, 40, 100\}$. Bottom: Energy profile.

Text Generation

		SNLI			PTB			Yahoo	
Models	FPPL	RPPL	NLL	FPPL	RPPL	NLL	FPPL	RPPL	NLL
Real Data	23.53	-	_	100.36) –	_	60.04	-	_
SA-VAE	39.03	46.43	33.56	147.92	210.02	101.28	128.19	148.57	326.70
FB-VAE	39.19	43.47	28.82	145.32	204.11	92.89	123.22	141.14	319.96
ARAE	44.30	82.20	28.14	165.23	232.93	91.31	158.37	216.77	320.09
Ours	27.81	31.96	28.90	107.45	181.54	91.35	80.91	118.08	321.18

Table 2: Forward Perplexity (FPPL), Reverse Perplexity (RPPL), and Negative Log-Likelihood (NLL) for our model and baselines on SNLI, PTB, and Yahoo datasets.

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Molecule Generation

Let x be an observed molecule represented in SMILES strings

$$z \sim p_{\alpha}(z), \quad x \sim p_{\beta}(x|z),$$

where

$$p_{\alpha}(z) = \frac{1}{Z(\alpha)} \exp(f_{\alpha}(z)) p_0(z)$$

$$p_{\beta}(x|z) = \prod_{t=1}^{T} p_{\beta}(x^{(t)} \mid x^{(1)}, \dots, x^{(t-1)}, z)$$

Sample molecules taken from the ZINC dataset (a) and generated by our model (b)

(1) RNN/auto-regressive model for SMILES sequence (2) EBM prior captures chemical rules implicitly

[1] Bo Pang, Tian Han, and Ying Nian Wu. Learning latent space energy-based prior model for molecule generation. Machine Learning for Molecules Workshop at NeurIPS, 2020

Molecule Generation

Evaluations

Jianwen Xie, Ying Nian Wu

- Validity: the percentage of valid molecules among all the generated ones
- Novelty: the percentage of generated molecules not appearing in training set
- **Uniqueness:** the percentage of unique ones among all the generated molecules

Model	Model Family	Validity w/ check	Validity w/o check	Novelty	Uniqueness
GraphVAE (Simonovsky et al., 2018)	Graph	0.140	-	1.000	0.316
CGVAE (Liu et al., 2018)	Graph	1.000	-	1.000	0.998
GCPN (You et al., 2018)	Graph	1.000	0.200	1.000	1.000
NeVAE (Samanta et al., 2019)	Graph	1.000	-	0.999	1.000
MRNN (Popova et al., 2019)	Graph	1.000	0.650	1.000	0.999
GraphNVP (Madhawa et al., 2019)	Graph	0.426	-	1.000	0.948
GraphAF (Shi et al., 2020)	Graph	1.000	0.680	1.000	0.991
ChemVAE (Gomez-Bombarelli et al., 2018)	LM	0.170	-	0.980	0.310
GrammarVAE (Kusner et al., 2017)	LM	0.310	-	1.000	0.108
SDVAE (Dai et al., 2018)	LM	0.435	-	-	-
FragmentVAE (Podda et al., 2020)	LM	1.000	-	0.995	0.998
Ours	LM	0.955	-	1.000	1.000

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Anomaly Detection

- If the generator and EBM are well learned, then the posterior $p_{\theta}(x, z)$ would form a discriminative latent space that has separated probability densities for normal and anomalous data.
- Take samples from the posterior of the learned model and use the unnormalized log-posterior $\log p_{\theta}(x,z)$ as the decision function.

Heldout D	Digit 1	4	5	7	9
VAE	0.063	0.337	0.325	0.148	0.104
MEG	0.281 ± 0.035	0.401 ± 0.061	0.402 ± 0.062	0.290 ± 0.040	0.342 ± 0.034
BiGAN-	$-\sigma$ 0.287 \pm 0.023	0.443 ± 0.029	0.514 ± 0.029	0.347 ± 0.017	0.307 ± 0.028
Latent Space	EBM 0.336 ± 0.008		0.619 ± 0.013	0.463 ± 0.009	0.413 ± 0.010

AUPRC scores (larger is better) for unsupervised anomaly detection on the MNIST dataset.

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Trajectory Prediction

Figure 2. Qualitative results of our proposed method across 4 different scenarios in the Stanford Drone. First row: The best prediction result sampled from 20 trials from LB-EBM. Second row: The 20 predicted trajectories sampled from LB-EBM. Third row: prediction results of agent pairs that has social interactions. The observed trajectories, ground truth predictions and our model's predictions are displayed in terms of white, blue and red dots respectively.

- z: latent thought/belief of whole trajectory (event)
- Prediction as inverse planning
- Energy as cost function, defined on whole trajectory
- Goes beyond Markov decision process framework
 - (1) non-Markovian dynamics
 - (2) non-stepwise cost

[1] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory prediction with latent belief energy-based model. CVPR, 2021.

Trajectory Prediction

	ADE	FDE
S-LSTM [1]	31.19	56.97
S-GAN-P [13]	27.23	41.44
MATF [52]	22.59	33.53
Desire [21]	19.25	34.05
SoPhie [42]	16.27	29.38
CF-VAE [3]	12.60	22.30
P2TIRL [7]	12.58	22.07
SimAug [24]	10.27	19.71
PECNet [28]	9.96	15.88
Ours	8.87	15.61

Table 1. ADE / FDE metrics on Stanford Drone for several methods compared to ours are shown. The lower th

	ETH	HOTEL	UNIV	ZARA1	ZARA2	A
Linear * [1]	1.33 / 2.94	0.39 / 0.72	0.82 / 1.59	0.62 / 1.21	0.77 / 1.48	0.79
SR-LSTM-2 * [51]	0.63 / 1.25	0.37 / 0.74	0.51 / 1.10	0.41 / 0.90	0.32 / 0.70	0.45
S-LSTM [1]	1.09 / 2.35	0.79 / 1.76	0.67 / 1.40	0.47 / 1.00	0.56 / 1.17	0.72
S-GAN-P [13]	0.87 / 1.62	0.67 / 1.37	0.76 / 1.52	0.35 / 0.68	0.42 / 0.84	0.61
SoPhie [42]	0.70 / 1.43	0.76 / 1.67	0.54 / 1.24	0.30 / 0.63	0.38 / 0.78	0.54
MATF [52]	0.81 / 1.52	0.67 / 1.37	0.60 / 1.26	0.34 / 0.68	0.42 / 0.84	0.57
CGNS [22]	0.62 / 1.40	0.70 / 0.93	0.48 / 1.22	0.32 / 0.59	0.35 / 0.71	0.49
PIF [26]	0.73 / 1.65	0.30 / 0.59	0.60 / 1.27	0.38 / 0.81	0.31 / 0.68	0.46
STSGN [50]	0.75 / 1.63	0.63 / 1.01	0.48 / 1.08	0.30 / 0.65	0.26 / 0.57	0.48
GAT [19]	0.68 / 1.29	0.68 / 1.40	0.57 / 1.29	0.29 / 0.60	0.37 / 0.75	0.52
Social-BiGAT [19]	0.69 / 1.29	0.49 / 1.01	0.55 / 1.32	0.30 / 0.62	0.36 / 0.75	0.48
Social-STGCNN [30]	0.64 / 1.11	0.49 / 0.85	0.44 / 0.79	0.34 / 0.53	0.30 / 0.48	0.44
PECNet [28]	0.54 / 0.87	0.18 / 0.24	0.35 / 0.60	0.22 / 0.39	0.17 / 0.30	0.29
Ours	0.30 / 0.52	0.13 / 0.20	0.27 / 0.52	0.20 / 0.37	0.15 / 0.29	0.21

ble 2. ADE / FDE metrics on ETH-UCY for several methods compared to ours are shown. The models with * mark are

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Semi-Supervised Learning

x: observed example. y: one-hot category (symbol). z: dense latent vector

$$p_{\theta}(y, z, x) = p_{\alpha}(y, z)p_{\beta}(x|z)$$

- The prior model is an energy-based model $\ p_lpha(y,z)=rac{1}{Z(lpha)}\exp(\langle y,F_lpha(z)
 angle)p_0(z)$
- $p_{\beta}(x|z)$: top-down generation model
- $p_lpha(y|z)$: soft-max classifier $p_lpha(y|z) \propto \exp(\langle y, F_lpha(z)
 angle) = \exp(F_lpha^{(y)}(z))$

Semi-supervised log-likelihood

$$L(\theta) = \sum_{\text{all}} \log p_{\theta}(x) + \lambda \sum_{\text{labeled}} \log p_{\theta}(y|x)$$

[1] Bo Pang, Erik Nijkamp, Jiali Cui, Tian Han, and Ying Nian Wu. Semi-supervised learning by latent space energy-based model of symbol-vector coupling. ICBINB Workshop at NeurIPS, 2020

Semi-Supervised Learning

Method	AGNews-Unigram 200 Labels
Self-training Glove (ID) Glove (OD) VAMPIRE Ours	77.3 ± 1.7 70.4 ± 1.2 68.8 ± 5.7 81.9 ± 0.5 84.5 ± 0.3

Accuracy on text dataset

Method	Hepmass 20 Labels	Miniboone 20 Labels	Protein 100 Labels
RBF Label Spreading	84.9	79.3	-
JEM	-	-	19.6
FlowGMM	88.5 ± 0.2	80.5 ± 0.7	=
Ours	89.1 ± 0.1	81.2 ± 0.3	23.1 ± 0.3
Π-Model	87.9 ± 0.2	80.8 ± 0.01	-
VAT	=	-	17.1

Accuracy on tabular datasets from the UCI repository.

	SVHN	CIFAR-10
Method	1000 Labels	4000 Labels
VAE M1+M2	64.0	-
AAE	82.3	-
JEM	66.0	-
FlowGMM	82.4	78.2
Ours	92.0	78.6
TripleGAN	94.2	83.0
BadGAN	95.8	85.6
Π -Model	94.6	83.6
VAT	94.3	85.8

Accuracy on SVHN and CIFAR-10

1. Energy-Based Generative Neural Networks

- Generative ConvNet: EBMs for images
- Spatial-Temporal Generative ConvNet: EBMs for videos
- Generative VoxelNet: EBMs for 3D volumetric shapes
- Generative PointNet: EBMs for unordered point clouds
- EBMs for inverse optimal control and trajectory prediction
- Patchwise Generative ConvNet: EBMs for internal learning

2. Energy-Based Generative Cooperative Networks

- Unconditioned image, video, 3D shape synthesis
- Supervised conditional learning
- Unsupervised image-to-image translation
- Unsupervised sequence-to-sequence translation

- Text Generation
- Molecule Generation
- Anomaly Detection
- Trajectory Prediction
- Semi-Supervised Learning
- Controlled Text Generation

Controlled Text Generation

Generative Model

$$p_{\theta}(y, z, x) = p_{\alpha}(y, z)p_{\beta}(x|z)$$

Symbol-Vector Coupling Prior

$$p_{\alpha}(y,z) = \frac{1}{Z_{\alpha}} \exp(\langle y, f_{\alpha}(z) \rangle) p_0(z)$$

Marginal Prior of the Continuous Vector

$$p_{\alpha}(z) = \frac{1}{Z_{\alpha}} \exp(F_{\alpha}(z)) p_{0}(z)$$
$$F_{\alpha}(z) = \log \sum \exp(\langle y, f_{\alpha}(z) \rangle)$$

Infer Symbol from Vector

$$p_{\alpha}(y|z) \propto \exp(\langle y, f_{\alpha}(z) \rangle)$$

Learning with Information Bottleneck

$$\begin{split} \mathcal{L}(\theta,\phi) &= \mathbb{D}_{\mathrm{KL}}(Q_{\phi}(x,z) \| P_{\theta}(x,z)) - \lambda \, \mathcal{I}(z,y) \\ &= -\, \mathcal{H}(x) - \underbrace{\mathbb{E}_{Q_{\phi}(x,z)}[\log p_{\beta}(x|z)]}_{\text{reconstruction}} \\ &+ \underbrace{\mathbb{D}_{\mathrm{KL}}(q_{\phi}(z) \| p_{\alpha}(z))}_{\text{EBM learning}} \\ &+ \underbrace{\mathcal{I}(x,z) - \lambda \, \mathcal{I}(z,y)}_{\text{information bottleneck}}, \end{split}$$

Controlled Text Generation

Discover Action and Emotion Labels in Daily Dialogue

Model	MI [↑]	BLEU [↑]	Action [↑]	Emotion $^{\uparrow}$
DI-VAE	1.20	3.05	0.18	0.09
semi-VAE	0.03	4.06	0.02	0.08
semi-VAE $+ \mathcal{I}(x,y)$	1.21	3.69	0.21	0.14
GM-VAE	0.00	2.03	0.08	0.02
$GM ext{-}VAE + \mathcal{I}(x,y)$	1.41	2.96	0.19	0.09
DGM-VAE	0.53	7.63	0.11	0.09
$DGM ext{-}VAE + \mathcal{I}(x,y)$	1.32	7.39	0.23	0.16
SVEBM	0.01	11.16	0.03	0.01
SVEBM-IB	2.42	10.04	0.59	0.56

Table 2. Results of interpretable language generation on DD. Mu tual information (MI), BLEU and homogeneity with actions and emotions are shown.

Sample Actions and Corresponding Utterances

Action	Inform-weather
Utterance	Next week it will rain on Saturday in Los Angeles It will be between 20-30F in Alhambra on Friday. It won't be overcast or cloudy at all this week in Carson
Action	Request-traffic/route
11001011	Request trame/route

Controlled Text Generation

Accuracy of Sentiment Control on Yelp Review

Model	$\mathbf{Overall}^{\uparrow}$	Positive $^{\uparrow}$	Negative $^{\uparrow}$
$DGM ext{-VAE} + \mathcal{I}(x,y)$	64.7%	95.3%	34.0%
CGAN	76.8%	94.9%	58.6%
SVEBM-IB	90.1%	95.1%	85.2%

Generated Positive and Negative Reviews

Positive	The staff is very friendly and the food is great. The best breakfast burritos in the valley. So I just had a great experience at this hotel. It's a great place to get the food and service. I would definitely recommend this place for your customers.
Negative	I have never had such a bad experience. The service was very poor. I wouldn't be returning to this place. Slowest service I've ever experienced. The food isn't worth the price.

Summary

Models and methods

- (1) Data space EBM.
- (2) Interaction with generator model.
- (3) Latent space EBM (more generally, inductive bias of top-down models).

Why is EBM useful?

- (1) Density estimation and synthesis.
- (2) Soft objective/cost/value or soft regularization/rules/constraints.
- (3) Generative classifier, contrastive self-supervised learning.