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Plan

1. Fundamentals: background, basic knowledges, illustrative examples (presented by Jianwen Xie)
2. Advanced: present advanced methods, explain key ideas and equations (presented by Ying Nian Wu)
3. Applications: applications of 1 and 2. (presented by Jianwen Xie and Ying Nian Wu)

Disclaimer:
References are not comprehensive or complete. Please refer to our papers for more references.
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Part I: Fundamentals

1. Background
. Probabilistic models of images
. Gibbs distribution in statistical physics
. Filters, Random Fields and Maximum Entropy (FRAME) models

. Generative ConvNet: EBM parameterized by modern neural network

2. Elements of Energy-Based Generative Learning
. Understanding Kullback-Leibler divergences
. Maximum likelihood learning, analysis by synthesis
. Gradient-based MCMC and Langevin sampling
. Adversarial self-critic interpretations
. Short-run MCMC for synthesis for EBMs

. Equivalence between EBMs and discriminative models
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Probabilistic Models of Images
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Gibbs Distribution in Statistical Physics
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Energy-based model originates from the Gibbs distribution in statistical physics:

* xis the state of a system (e.g., ferromagnetic substance, a cup of water, gas...).

*  E(x) is the energy of the system at state x.

* T isthe temperature. As T — 0,p(x) focuses on the global minima of E (x).

* Zisthe normalizing constant, or partition function, to make p(x) a probability density.
* The partition function is ubiquitous in statistics physics (also quantum physics).

* States of low energies have high probabilities
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Energy-Based Model (EMB)

1
Z(9)

po(x) = exp(fo(z)) 7(6) = f exp(f())dz

In this tutorial, we present energy-based model (EBM):

®* xisanimage (or video, text, etc.)

°* —E(x)/T will be parametrized by modern ConvNet fg(x) , where 6 denotes the parameters.

* fp(x) captures regularities, rules, organizations and constraints probabilistically.

° In conditional settings, fp(x) acts as soft objective function, cost function, value function, or critic.

° Itactually is a softmax probability, recall in classification, for a category c, with logit score f(c),

exp(f(c))
> exp(f(c))

® Here we assign score fg(x) to each x, and softmax over all x (as if each x is a category).

Pr(c) =  exp(f(c)) =
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FRAME (Filters, Random field, And Maximum Entropy)

k I denotes the image

= 7 SXP Z Z Qkh((I, Bk,w)) Q(I) x: pixel, position; D: domain of x

k=1xzeD . . . . "
v By x is Gabor filter of type (scale/orientation) k at position x

Ian;:tl:amagenf (I, Bk'x) iS filter reSponSe

h(): non-linear rectification

q(I): reference distribution (e.g., uniform or Gaussian noise)

Markov random field, Gibbs distribution

.--. Maximum entropy distribution

Exponential family model

The outputcircle as seenwhen pass
through individual Gabor filter

Original image, Gabor filters, filtered images (taken from internet) One convolutional Iayer (given)

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. 1JCV, 1998.
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FRAME (Filters, Random field, and Maximum Entropy)

For each pair of texture images, the image on the left is the observed image, and the image on the
right is the image randomly sampled from the model.

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. 1JCV, 1998.
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GRADE (Gibbs Reaction And Diffusion Equation)

N
-

//

G (&) (f
. . At
Langevin dynamics T, n, = I, + 7VIfE,(It) + V Atey e; ~ N(0,1)
gradient ascent + diffusion (Brownian motion)

At corresponds to step size in implementation

[1] Song-Chun Zhu, and David Mumford. Grade: Gibbs reaction and diffusion equations. ICCV 1998
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Inhomogeneous FRAME Model

The inhomogeneous FRAME model [1,2,3] for object patterns

k
poD) = 5750 | 303 Ouah({L, o)) | )

k=1zeD

k
foD) =3 3 buah({L Br)) a® exp |~ TP

k=1zeD

One convolutional layer (given), one fully connected layer (learned Hk,x) >

0(t+1) 9( )+ % z:; h((:[“ Bk,w)) — % Z_; h((i,“ Bk,m)) HMC Synthesis from the inhomogeneous FRAME

Analysis by synthesis: (use HMC to sample synthesized images)

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. Inducing Wavelets into Random Fields via Generative Boosting. Journal of Applied and Computational Harmonic
Analysis (ACHA) 2015

[2] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Sparse FRAME Models for Natural Image Patterns. International Journal of Computer Vision (1JCV) 2014
[3] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Inhomogeneous FRAME Models for Object Patterns. (CVPR) 2014
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FRAME Model with VGG Filters

‘».v
W~

=

VGG convolutional layer (given), one fully connected layer (learned) Synthesis by Langevin dynamics

[1] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. AAAI 2016
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EBM Parameterized by Modern Neural Network

Let x be an image defined on image domain D, the Generative ConvNet is a probability distribution defined on

image domain 1

. e . TR 1 1
where q(x) is a reference distribution, e.g., uniform or Gaussian distribution ¢(z) = 5773 €XP (—2—2”3;”2)
(2mo?) o

exp(fo())q(x)

*  Z(0) is the normalizing constant ~ Z(0) = /exp(fg(a:))q(a:)dar

fo(x) is parameterized by a ConvNet structure that maps the input image to a scalar. 8 contains all the

parameters of the ConvNet.

. T

"

x

S Jigh

" feature maps
input RGB image - sub-sampled .~

’d layers
2™ Jayer %

feature maps
1% layer

&

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Kullback-Leibler Divergences in Two Directions

For two probability densities p(x) and g(x), the Kullback-Leibler Divergence (KL-divergence) is defined

DkL(pllg) =E llogp(m] / (2) log wgdw

The KL-divergence appears in two scenarios:

(1) Maximum likelihood estimation: Suppose there are training examples x;~pqata(x) and we want to learn a
model pg(x). The log-likelihood function is

1 n
L(6) = = > 1ogpy (1) = Epy., llogpo()
=1

Thus, for a large n, maximizing the log-likelihood is equivalent to minimizing the KL-divergence

Dk, (pdata [[pg) = — entropy (Pdata ) — Ep,... [logpe(z)] = — entropy (pdata ) — L(6)

Jianwen Xie, Ying Nian Wu
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Kullback-Leibler Divergences in Two Directions

(2) Variational approximation: Suppose there is a target distribution piarger and we know pearger UP to a
normalizing constant, e.g.,

1
ptarget(m) s E exp(f(:c))
where f(x) is known but Z = [ exp(f(x))dx is analytically intractable.

Suppose we want to approximate it by a distribution q4. We can find ¢ by minimizing

]DKL (Qc;prtarget ) — qus [log Qq‘b(w)] o qus [f(:l])] + log Z

The above minimization does not require knowledge of log Z.
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Kullback-Leibler Divergences in Two Directions

The behaviors of D1, (Pdata ||pe) in scenario (1) and Dkr, (¢4 ||Prarget ) in scenario (2) are different.

In (1), pg tends to cover all the modes of pgata, While in (2) g4 tends to focus on some major modes of Pearget
while ignoring the minor modes.

do

Pdata
be Ptarget

N\

Dkr (qu Hptarget )

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Part I: Fundamentals

1. Background
. Probabilistic models of images
. Gibbs distribution in statistical physics
. Filters, Random Fields and Maximum Entropy (FRAME) models

. Generative ConvNet: EBM parameterized by modern neural network

2. Elements of Energy-Based Generative Learning
. Understanding Kullback-Leibler divergences
. Maximum likelihood learning, analysis by synthesis
. Gradient-based MCMC and Langevin sampling
. Adversarial self-critic interpretations
. Short-run MCMC for synthesis for EBMs

. Equivalence between EBMs and discriminative models

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Maximum Likelihood Estimation

* Observed data {:131, ehsy :L‘n} ~ pdata(-’ﬁ)

1
Model: pg(:c) = Z(@) exp(fg(a:))
() = / exp(fo(z))da

Objective function of MLE learning is
1 n
L) = —~ Zlogpe(wz-)
i=1
The gradient of the log-likelihood is

L'(6) = % Z Vo fo(xi) = Epy(z)[Vofo(z)]

Jianwen Xie, Ying Nian Wu

Derivation of gradient of the log-likelihood:
Vo logpg(x) = Vg fe(x) — Volog Z(8)
where the term Vg log Z(f)can be rewritten as

1
MVGZ(Q)

_ %Ve f exp(f3(2))da

1

- m/exp(fe(w))vefe(x)dx

:/Z(le) exp(fo(x)) Ve fo(x)dx

= /Pe(iﬂ)vefe(l’)dﬂ?
= IE:pa(m) Vo fo(x)]

Volog Z(0) =

ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Maximum Likelihood Estimation

Given a set of observed images {$1, ceey EUn} ~ Pdata(-’ﬂ)

> po(2) Ve fo()

Gradient of MLE learning

e.g., x is a 100x100 grey-scale image

L'(0)=E V | —E V
( ) pdata(m) [ 9f9 (x). ~p9 ((E) [ e‘fe (x)] Each pixel ~ [O, 255]
1 — 1 & ~ Image space is 256 10000 |
~ — > Vofo(zi) = > VafolZ;
n ; efe( ) n ; Ofe( ) Intractable!!

Approximated by MCMC {5)1, s &8 577'1} ~ Do (CL’)

The expectation is analytically intractable and has to be approximated by Markov chain Monte Carlo (MCMC),

such as Langevin dynamics or Hamiltonian Monte Carlo (HMC).

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Gradient-Based MCMC and Langevin Dynamics

1
For high dimensional data x, sampling from distribution pg (:U) = Z(Q) eXp(fg (:L‘)) requires MCMC, such as
Langevin dynamics
At
Ti+At = Tt + Twag(mt) + V Atey et ~ N(0,1)
Gradient ascent Brownian motion

As At — 0 and t — oo, the distribution of x; converges to pg(x).
At corresponds to step size in implementation.

Different implementations of the synthesis step:
(i) Persistent chain: runs a finite-step MCMC from the synthesized examples generated from the previous epoch.
(ii) Contrastive divergence: runs a finite-step MCMC from the observed examples.

(iii) Non-persistent short-run MCMC: runs a finite-step MCMC from Gaussian white noise.
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Analysis by Synthesis

Input: training images {Z1,...,Tn} ~ Pdata(T)
Output: model parameters @

Fort=1to N

observed statistics synthesized statistics

synthesis step: {571, N féﬁ} ~ Do, (:L’)

1 & 1 o ]
analysis step: 9t+1 — 9t + Nt E Z Vefe(wz) T = Z VQ.f@(xﬁ)
1=1 1=1
End
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Adversarial Interpretation

* The update of 6 is based on

L) ~ - > Vofo(z:) - %Zvﬂfﬂ(féz)
=1 =1
1 & 1, .
=Vo | > folxi) - = > fo(@:)
i=1 i=1

where {Z1, ..., Z7; } are the synthesized images generated by the Langevin dynamics

* Define avalue function V ({Z;},0) = ng(scz) - = Z fo(Z:)

« The learning and sampling steps play a minimax game: min max V({:L‘z} 9)
* See Part 2 for adversarial contrastive divergence {z.} 0
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Mode Seeking and Mode Shifting

Mode seeking and mode shifting

—— true model x observed data
—— learned model o synthesized data
fO4 FO) A
-
Lecee x 2000000¢ e
(1) mode searching (3) mode chasmg
fx)4 feoe
—
20000 L0000 > x 2000089< x
(2) mode shifting (4) mode matching
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Short-Run MCMC for EBM
1

Model (Representation): Py (g;) — Z(B) eXp(fg (x)) A short-run MCMC: Let M, be the transition

At kernel of K steps of MCMC toward pg(x).
MCMC (Generation): 1y A, = x4 + Tvmfg(xt) + VAte:  For a fixed initial probability pq, the resulting

marginal distribution of sample x after

running K steps of MCMC starting from p, is
1 « 1 «

~ ) -3 denoted b

N ;_1 Vo fo(xi) = ;_l Vo fo(:) y

qo(z) = Mppo(x) = /po(z)Mg(:c|z)dz

VQL(Q) = Epdata(m)[vefe(iﬁ)] - Epe(m)[vf?fH(w)]

Z~Po
x = Mpy(z,e)
Synthesis by short-run MCMC We can write x = My(z), where we fix e = (e),

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

1
Model distribution (Representation): po(z) = Z(6) exp(fo(x))

Short-run MCMC distribution (Generation): ¢y(x) = Mypo(z) = /pO(Z)M9(£E|Z)dZ

Training 8 with short-run MCMC is no longer a maximum likelihood estimator (MLE) but a moment matching

estimator (MME) that solves the following estimating equation:

Epgaa [vé?fé’(x)] = Eqg, [V@fg(ﬂi‘)]
|

which is a perturbation of the maximum likelihood estimating equation.

» Not pg(x) !

Part 2 will present methods to improve sampling and reduce bias due to perturbation, or to avoid sampling.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

Consider a simple model where we only learn top layer weight parameters:

* The blue curve illustrates the model distributions

corresponding to different values of parameter.

© = {po(z) = exp((0, h(x)))/Z(0), 0}

e The black curve illustrates all the distributions that

match pgata (black dot) in terms of E[h(x)]

Q= {p: Ep[h(z)] = Epg,.. [M(2)]}

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC as a Generator Model

-i’ J

o Tz Fx

¥ ‘ i

PAOA®
Interpolation by short-run MCMC resembling a generator or flow model: The transition depicts the sequence Mg(Zp) with
interpolated noise z, = pz; + /1 — p? z; where p € [0,1] on CelebA (64x64). Left: My(zy) . Right: Mg(z;).

»
N

3333@@6;6@

Reconstruction by short-run MCMC resembling a generator or flow model: min||x — My(2)||2. The transition depicts My (z;) over
zZ

time t from random initialization ¢ = 0 to reconstruction t = 200 on CelebA (64%x64). Left: Random initialization. Right: Observed
examples.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Part I: Fundamentals

1. Background
. Probabilistic models of images
. Gibbs distribution in statistical physics
. Filters, Random Fields and Maximum Entropy (FRAME) models

. Generative ConvNet: EBM parameterized by modern neural network

2. Elements of Energy-Based Generative Learning
. Understanding Kullback-Leibler divergences
. Maximum likelihood learning, analysis by synthesis
. Gradient-based MCMC and Langevin sampling
. Adversarial self-critic interpretations
. Short-run MCMC for synthesis for EBMs

. Equivalence between EBMs and discriminative models

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Equivalence between EBM and Discriminative Model

Discriminative model

Let x be an image, and y be a label or annotation of x. Suppose there are C categories. The soft-max classifier is

exp (fo(x))
S _1exp (for0())

where f. o is a deep network, and 6 denotes all the weight and bias parameters. For different c, the networks f, o
may share a common body and only differ in head layer.

po(y=clz)=

The model can be rewritten as

1 c
poly=clx)= Z9(7) exp (fe,0(w)) where Zy(z) =) exp(feo(x))
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Equivalence between EBM and Discriminative Model

The discriminative model can be learned by maximum likelihood. The log-likelihood is the average of

logpo(y | ) = fy,0(x) —log Zp(x)

The gradient of log pg (y|x) with respect to 0 is

Vologpo(y | ) = Vofye(x) — Ep, ya) [VoSfyo(z)]

where Vg 10g ZQ(:E) . Epg(y|af:) [vf?f’y,@(x)]

Py | :13)]

The MLE minimizes Dkr.(p(y | ©)||q(y | ©)) = Ep(a, {log
Py [ 2)la(y | 7)) = Ep(a.y) oy | )

A special case is binary classification, where y € {0,1}. It is usually assumed that f, g (x) = 0, f1 g (x) = fy(x), so

that
poly=1]|z)= T o %—fg(:p)) = sigmoid (fg(x))
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Equivalence between EBM and Discriminative Model

EBM < discriminative model

A more general version of EBM is of the form of exponential tilting of a reference distribution

po(x) = Zig exp (fo(x)) q(z)

where g(x) is a given reference measure, such as uniform measure or Gaussian white noise distribution.

We can treat pg as the positive distribution, and q(x) the negative distribution.
Let y € {0,1}, and the prior probability p(y = 1) = p, sothatp(y =0) =1 — p.

Let p(x|y = 1) = pg(x), p(x|y = 0) = q(x).

Following the Bayes rule, P(y =1|x) = = (fo(z) +0) where b = log(p/(1 - p)) —log Z,
BRI L+ exp (fo(z) +b) - ORI TP TR
[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

Jianwen Xie, Ying Nian Wu
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Equivalence between EBM and Discriminative Model

More generally, suppose we have C categories, and

1
Zc,9

Peo(T) = exp (feo(x)) q(z),c=1,...,C,

suppose the prior probability for category c is p., then

_ D (fe,0(®) + bc)
U=l = o o oo@) + b0

Conversely, if p(y = c|x) is of the form soft-max classifier, then p, g (x) is of the form of exponential titling based on
the logit score f, g(x) + b,.

where b, = logp, —logZ g.

EBM is a generative classifier which can be learned from unlabeled data.

Introspective learning: sequential discriminative learning of EBM (by Zhuowen Tu’s group).
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Part II: Advanced

1. Strategies for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Multistage Coarse-to-Fine Expanding and Sampling

1 Approach | Models | FID

VAE | VAE (Kingma & Welling, 2014) | 78.41

pe x exp 9 a: Autoregressive PixelCNN (Van den Oord et al., 2016) 65.93

2 : (9 ) g PixellQN (Ostrovski et al., 2018) 49.46

WGAN-GP (Gulrajani et al., 2017) 36.40

GAN SN-GAN (Miyato et al., 2018) 21.70

. i . StyleGAN2-ADA (Karras et al., 2020) 2.92
Multistage Learning Smooth Sampling £ - -

o f(x) o Glow (Kingma & Dhariwal, 2018) 45.99

Flow Residual Flow (Chen et al., 2019a) 46.37

Contrastive Flow (Gao et al., 2020) 37.30

MDSM (Li et al., 2020) 30.93

° S Score-based NCSN (Song & Ermon, 2019) 25.32

S s NCK-SVGD (Chang et al., 2020) 21.95

$ § Short-run EBM (Nijkamp etal., 2019) | 44.50

Multi-grid (Gao et al., 2018) 40.01

EBM EBM (ensemble) (Du & Mordatch, 2019) | 38.20

CoopNets (Xie et al., 2018b) 33.61

EBM+VAE (Xie et al., 2021d) 39.01

CF-EBM 16.71

* Training: incrementally grow the EBM from a low resolution (coarse model) to a high resolution (fine model)
by gradually adding new layers to the energy function.

* Testing: keep the EBM at the highest resolution for image generation using the short-run MCMC sampling.

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.
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Multistage Coarse-to-Fine Expanding and Sampling

" * o

SRR SN

MCMC generative sequences on CelebA (50 Langevin steps) Generated examples on CelebA-HQ at 512 X 512 resolution

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Multi-Grid Modeling and Sampling

Y,
-]
Ix1 4x4

16x16

Stagel: generate Y; from Yo 6dx64
Stage2: generate Y from Y

T
Stage3: generate Y; from Y,

* Learning models at multiple resolutions (grids)

* Initialize MCMC sampling of higher resolution model from images sampled from lower resolution model
* The lowest resolution is 1x1. The model is histogram

[1] Ruigi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Multi-Grid Modeling and Sampling

Image generation Inpainting

EAMNIE-

-

>
.
7 -

L _— ~—

Feature learning: EBM as a generative classifier

Test error rate with # of labeled images | 1,000 2,000 4,000

DGN 36.02 - -

Virtual adversarial 24.63 - -

Auxiliary deep generative model 22.86 - -
Supervised CNN with the same structure | 39.04 22.26 15.24
Multi-grid CD 4+ CNN classifier 19.73 15.86 12.71

[1] Ruigi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Diffusion-Based Modeling and Sampling

pothlm
.* =) .H H

N —— -

(xtlxt 1

Ty =Ti—1+ 06 — q(T¢|Ti-1)

po(xt) = exp(fo(xt,t))

Z(6,t)

1
paCaiafon) x exp (fo(ois) = o o — el

* Conditional distribution is easier to sample from than marginal
* Close to unimodal around x;
* Denoising, recall x;_; with hint x;

[1] Ruigi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021
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Diffusion-Based Modeling and Sampling

Diffusion recovery likelihood: SOTA synthesized results for pure EBMs.

Table 1: FID and inception scores on CIFAR-10.

Model FID] Inceptiont
GAN-based

WGAN-GP (Gulrajani et al., 2017) 36.4 7.86 +.07
SNGAN (Miyato et al., 2018) 21.7 822+ .05

SNGAN-DDLS (Che et al., 2020) 1542 9.09 .10
StyleGAN2-ADA (Karras et al., 2020) 3.26 9.74 + .05

Score-based

NCSN (Song & Ermon, 2019) 2532 8.87+.12
NCSN-v2 (Song & Ermon, 2020) 31.75 -
DDPM (Ho et al., 2020) 317 946 + .11
Explicit EBM-conditional

CoopNets (Xie et al., 2019) - 7.30
EBM-IG (Du & Mordatch, 2019) 379 8.30
JEM (Grathwohl et al., 2019) 384 8.76
Explicit EBM

CoopNets (Xie et al., 2016a) 33.61 6.55
EBM-SR (Nijkamp et al., 2019b) - 6.21

EBM-IG (Du & Mordatch, 2019 38.2 6.78
Ours (76) 9.60 8.58 +.12

[1] Ruigi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021
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Diffusion-Based Modeling and Sampling

[1] Ruigi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Generator as Approximate Sampler of EBM

Top-down mapping Bottom-up mapping D2 updating
hidden vector z energy — fo(x) |
(2 T D1 Langevin
example x = gq(2) example x i i synthesized examples '—>
(a) Generator model (b) Energy-based model| ~ "TTTTTTTTTTTTTTTTT

( observed examples )7
Energy-based model

. Bottom-up network; scalar function, objective/cost/value, critic/teacher

. Easy to specify, hard to sample G2 updating
*  Strong approximation to data density

Generator model

. Top-down network; vector-valued function, sampler/policy, actor/student — mferred latent factors |
. Direct ancestral sampling, implicit marginal density f G1 Langevin
*  Manifold principle (dimension reduction), plus Gaussian white noise ( observed examples ]

. May not approximate data density as well as EBM
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Generator Model

z ~ N(0,1)
r = gg(z) + €

x: high-dimensional example;

z: low-dimensional latent vector (thought vector, code), follows a simple prior

* g:generation, decoder

€: additive Gaussian white noise

Manifold principle: high-dimensional data lie close to a low-dimensional manifold

Embedding: linear interpolation and simple arithmetic

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generator Model

Model & Y N(O, I)
T = gp(z) + €

Conditional Po (:13|2:) = N(gg (Z), 021)

Joint pB(ma Z) - p(z)p9($|z)
1 5 1
log (2, 2) = =3 1z — ga(2)” — SIP + constant

Marginal po(x) = /pg(:ﬁ,z)dz

Posterior po(z|x) = po(z, v)/po(x)
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Maximum Likelihood Learning of Generator Model

Log-likelihood

I
N
!
3 |
ing
5
aQ
i~
s
83

Gradient Vologpg(z) = ——Vope(z)
DPo\Z

1
- 1
po(x) /pg(:c,z)vg ogpe(z,2)dz

_ [ Po(@:2) 0 x, 2)dz
—/ pe(x) vﬂl gpﬂ( ) )d

=fpe(z|$)va log pg(x, 2)dz

= Epy (212)[Vo log p(z, 2)]

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Maximum Likelihood Learning of Generator Model

Log-likelihood L(Q) — % Z log e (333)
=1
Gradient Vg log pg(z) = Ep, (z]2)[ Ve log p(z, 2)]

e |

log po(a, 2) = —

Langevin inference

1 5 1
5.3 |z — go(2)]|” — §Hz\|2 + constant

At
Zir At = Z¢ + 7vz logpg(zt|ac) + Vv Atet

1

V. logp(z|z) = % (z — g0(2)) Vsg0(2) — 2 Vo logpy(z,2) = —5 (v — 9o(2)) Vogo(2)

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Two Generative Models

Generator density: implicit integral
po(e) = [ p@palal2)iz

EBM density: explicit, unnormalized

1
Z(a)

exp(fa(z))

To(T) =

Data density pdata(:t)
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Cooperative Learning via MCMC Teaching

Generator P@ EBM Tl

Generator is student, EBM is teacher

Generator generates initial draft, EBM refines it by Langevin

EBM learns from data as usual

Generator learns from EBM revision with known z: MCMC teaching

Avoid (left) or simplify (right) inference

Generator amortizes EBM’s MCMC and jumpstarts EBM’s MCMC

EMB’s MCMC refinement serves as temporal difference teaching of generator

Vs GAN: an extra refinement process guided by EBM

6
G2 updating

Generator

( observed examples )7

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Jianwen Xie, Ying Nian Wu
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Theoretical Underpinning

g Markov M ection
transitio

Po®

Learning EBM by modified contrastive divergence Dkt (Pdata || Ta) — DrL(M o Pow || Ta)

Learning generator by MCMC teaching D1, (Ma(t)pg(t) || pe)

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Image Modeling

original
corrupted
inpainted
image inpainting

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Cooperative Learning via Variational MCMC Teaching

* To retrieve the latent variable of {X;} provided by EBM in cooperative learning, a tractable
approximate inference network q(p(zlx) can used to infer {Z;} instead of using MCMC inference.

Then the learning of q,,(z|x) and pg (x|z) forms a VAE that treats {X;} as training examples.

* Variational MCMC teaching of the inference and generator networks is a minimization of

variational lower bound of the negative log likelihood

L0, ) = Z log po(Z;) — YDrL (g, (2i|%:)||pe(2i|Ts))]

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Cooperative Learning via Variational MCMC Teaching

>

i > X i T > X Xi —------ > X
ot o) o)

>

Fast MCMC Teaching MCMC Teaching Variational MCMC Teaching
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Image synthesis
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[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021



Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Divergence Triangle (without MCMC)

* Integration of variational and adversarial learning
* Generator: variational auto-encoder with an encoder as inference model
* EBM: adversarial contrastive divergence

* Three KL-divergences form a triangle

[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and

inference model. CVPR 2019
[2] Tian Han, Erik Nijkamp, Lingi Zhou, Bo Pang, Song-Chun Zhu, Ying Nian Wu. Joint training of variational auto-encoder and latent energy-based model. CVPR 2020
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Variational Auto-Encoder for Generator

. . Q
Divergence perturbation pa(z)gs(z | 2)
* First KL = maximum likelihood ;

* Positively perturbed by second KL — from intractable marginal to tractable joint f
* VAE: alternating projections P
p(2)pe(z | 2)

Dx1 (Pdata()|[pe (7)) + Dxr(ge(2|7)[|pe(2|))
= DKL (Pdata(T)qs(2]7)||lPe(2, 7)) = DxL(Q4 | Po)

[1] Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014.
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Adversarial Contrastive Divergence for EBM

Divergence perturbation

*  First KL - maximum likelihood

* Negative perturbed by second KL — contrastive divergence, canceling intractable log Z term, adversarial

* A more elegant form of adversarial, a chasing game, related to W-GAN and inverse reinforcement learning

* Generator as an approximate sampler of EBM, actor; EBM criticizes generator vs data, critic
mcin mGaX []D)KL (pda.ta.”ﬂ'a) — Dk, (pB ||7Ta)]

Learning gradient of EBM
ValEpua (fa (7)) = Epy (fa(z))]

[1] 1an J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherijil Ozair, Aaron C. Courville, Yoshua Bengio. Generative Adversarial Nets. NIPS 2014.
[2] Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein Generative Adversarial Networks. ICML 2017.
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Divergence Triangle

o(2)gy (2 |

"

Q
‘pd(w)%(z I w)}

* Learning gradients are all tractable

max min min A(Oz, 9’ ¢) e VAE: P and Q running towards each other
@ o ¢ * ACD: P running towards Q, while P chasing P

A = DKL(Q”P) + DKL(P”H) o DKL(Q”H) * Learn EBM without MCMC

* Learn VAE with better synthesis, regularized by EBM

Three joint distributions g ! wg

Q(z, ) = Pdata(®)qe(2|2)
P(z,z) = p(2)pe(z|2)
(2, ) = 7o (x)qs(2|7)

[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and
inference model. CVPR 2019.
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Image Generation and Interpolation

[1] Tian Han*, Erik Nijkamp*, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and
inference model. CVPR 2019.
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model
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Latent Space Energy-Based Prior Model

x: observed example. z: latent vector.
Jal2

po(z,z) = pa(2)ps(z|2) t
] z

Pa(2) = m exp(fa(2))po(2) ‘ g,B (Z)
x =gp(z) +e€ T

* EBM defined on z, standing on a top-down generator.
*  Exponential tilting of py(2), pg is non-informative isotropic Gaussian or uniform prior.
* Empirical Bayes: learning prior from data, latent space modeling.

* Learning regularities and rules in latent space.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Text Modeling

x: observed example. z: latent vector.

Po(2, 2) = pa(2)ps(a]2)
Pa(z) = @ exp(fa(2))Po(2)

pﬂ(xlz) — Hpﬁ(x(t)lx(l), ---,SL'(t_l),z)

t=1
* RNN/auto-regressive generation model for text
* zis athought vector about the whole sentence and controls the generation of the sentence at each time step
* Latent space EBM is like a value function for planning the thought vector z
* Enables abstraction of a whole sentence
* Can be applied to other sequence data or time series data

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Learning by Maximum Likelihood

Log-likelihood n fO’, (Z)
L(0) = " log po () t
1=1

Gradient for a training example ' g/@ (Z)

Vo logpé’( ) Epe (z]x) [Ve logpg(a: Z)]
= Epy (212) [Vo(log pa(z) + log ps(z|2))]

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Learning by Maximum Likelihood

* Learning EBM prior: matching prior and aggregated posterior

50(@) = Va log po(a) fa(2)
= Epy(2l2) [Vafa(2)] = Epy(2)[Vafa(?)] 1)

* Learning generator: reconstruction l g/@ (Z)

0p(x) = Vglogpe(z) €T
= Epo(z10) [V s log pg(x|2)]

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Matching Prior and Aggregated Posterior

P(%, 2) = Pdata(T)pe(2|T) fol(2)

i) = [ @ )de = EpoloGlo)]

p(z,2) = B2l qES
XL

Maximum likelihood learning minimizes KL(aggregated posterior | prior)

Dx1, (Pdata () |Po (7)) = DKL (Pdata(T)pe (2|2)||pe (2)pe (2] 2))
= Dk1(P(2)p(z|2)||pa(2)ps(z|2))
= DkL(P(2)||pa(2)) + DkL(p(z|2)|lps(z|2))

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Prior and Posterior Sampling

Langevin dynamics

0~ (2 fal2)
At
Zt+ At — 2t + 7Vz log W(Zt) + V Atet t

+ zis low-dimensional ‘ 95(2)

* Sampling is efficient and mixes well T

* Short-run MCMC for inference and synthesis (e.g., K = 20)

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Learning and Sampling Algorithm

fort=0:T7 —1do

1. Mini-batch: Sample observed examples {x; } ;.

2. Prior sampling: For each x;, sample z; ~ pa,(2) by Langevin sampling from target distribution
m(2) = pa; (2), and s = s, K = K.

3. Posterior sampling: For each x;, sample z;” ~ Py, (2|z;) by Langevin sampling from target
distribution 7(z) = pe, (z|zi), and s = s1, K = K.

4. Learning prior model: a:y1 = e +1m0= > 1o, [Vafa, (2]7) — Vafa, (27))-

5. Learning generation model: 3:11 = 8: + mi— >, Vlogpg, (z:|2]).

Have been applied to (1) image generation, (2) text generation, (3) molecule generation,

(4) trajectory prediction, (5) semi-supervised learning with information bottleneck. See part 3.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Amortizing MCMC Sampling

Divergence perturbation framework
falz
A(@, Qb, w) - ID)KL (pdata(x)”pG(w)) O;( )
+ Dxw(gg(22)||po(2]2)) — Dkr(qy (2)[Pa(2))

VA
Cl 95(%)
min min mq/f)a,x A0, ¢, ) €T

o ¢

* Positive phase: posterior sampler, inference model, generalizing variational auto-encoder
* Negative phase: prior sampler, adversarial contrastive divergence, prior MCMC sampling is fast

* Short-run MCMC as approximated sampler

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Image Generation

Models VAE 2SVAE RAE SRI _ SRI(L=5) _ Ours
svaN  MSE 0019 0.019 0.014 0.018 0.011 0.008
FID 4678 42.81 40.02 44.86 35.03 29.44

MSE _ 0.057 0.056 0.027 _ _ 0.020

CIFAR-10 "oy 106.37 109.77 74.16 ] ] 70.15
Colepa MSE 0,021 0.021 0.018 0.020 0.015 0.013
FID  65.75 49.70 40.95 61.03 47.95 37.87

Table 1: MSE of testing reconstructions and FID of generated samples for SVHN (32 x 32 x 3), CIFAR-10
(32 x 32 x 3), and CelebA (64 x 64 x 3) datasets.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Short-Run MCMC

y 1.

bl il (5 5 LEQENE A At B
,g‘fg &{9 Al ab 4B

y ol

_50 B

—100 4

-150 4

—200 A

—250 A

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Long-Run MCMC

=100 1

=154 1

=200 7

— 50

=200

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Text Generation

RNN/auto-regressive generation model for text.
z is a thought vector about the whole sentence and controls the generation of the sentence at each time step.

Forward Perplexity (FPPL), Reverse Perplexity (RPPL), and Negative Log-Likelihood (NLL) for the latent space
energy-based prior model and baselines on SNLI, PTB, and Yahoo datasets.

SNLI PTB Yahoo
Models FPPL RPPL NLL FPPL RPPL NLL FPPL RPPL NLL
Real Data 23.53 - - 100.36 - - 60.04 - -
SA-VAE 39.03 46.43 33.56 147.92 210.02 101.28 128.19 148.57 326.70
FB-VAE 39.19 43.47 28.82 145.32 204.11 92.89 123.22 141.14 319.96
ARAE 4430 82.20 28.14 165.23 232.93 91.31 158.37 216.77 320.09
Ours 27.81 31.96 28.90 107.45 181.54 91.35 80.91 118.08 321.18

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Part II: Advanced

1. Strategy for Efficient Learning and Sampling
. Multi-stage expanding and sampling for EBMs
. Multi-grid learning and sampling for EBMs
. Learning EBM by recovery likelihood

2. Energy-Based Generative Frameworks
. Generative cooperative network
. Divergence triangle
. Latent Space Energy-Based Prior Model

. Flow contrastive estimation of energy-based model

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models




Noise Contrastive Estimation of EBM

1
Z(0)

The energy-based model (EBM) is defined as:  pg(x) = exp|fo(z)]

po(x) = exp[fo(x) — ], c =log Z(0) c is now treated as another free parameter to learn.

6 can be estimated by maximizing the following objective function:

learning by contrast

J(0) = Epgsa [log #&2(@] + Eq [bg % EBM as a generative classifier

* The first term relies on observed training examples {x;,i = 1,...,n}from data distribution.

* The second term relies on the generated examples {X;,i = 1,...,n}from a noise distribution q(x).

[1] Michael Gutmann, Aapo Hyvarinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. AISTATS, 2010
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Noise Contrastive Estimation of EBM

_ po () __alz)
J(0) = By, [log 585805 | + By log o 42 (1)

The objective function of NCE connects to logistic regression in supervised learning.

Suppose for each training or generated examples, we assign a binary class label y:

* y = 1ifxisfromtraining dataset

* y = 0ifxisgenerated from q(x).

Equal probabilities for two class labels are assumed: p(y = 1) = p(y = 0) = 0.5, we have
pe(x)

pe(r) +q(z)

po(y = 1|z) = = u(x,d)

The log-likelihood of logistic regression is given by

1(0) = Z log u(x;;0) + Zlog(l —u(Z;;0))  an approximation of Eq (1)
=1 =1

NCE turns MLE to a discriminative problem by introducing a noise distribution g(x)

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Flow-Based Model

Flow-Based Model: | x = g, (2); 2z ~ qo(2)

qo is @ known Gaussian noise distribution. g, is an invertible transformations where the log determinants of the

lacobians of the transformations can be explicitly obtained.

*  Under the change of variables, distribution of x can be expressed as| q. () = qo(g, ()| det(dg, ' (x)/0x)|

* In the flow-based model, g, is composed of a sequence of transformations g,=gq, © ga, °- ° Ja,,- The

relation between z and x can be writtenasz <> h; < - h,_; © X.

Ga(?) = qo(ga " ()T, | det(Ohi—1/Oh))|

* The flow-based model chooses transformations g whose Jacobian is a triangle matrix, so that the

computation of determinant becomes | det(0h,;_1/0h;)| = ll|diag(Oh;_1/0h;)]

[1] Diederik P. Kingma, Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. NeurIPS 2018.
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EBM vs Flow-Based Model

Energy-based models:

O Pros: (1) free choice of energy function, can be any CNN structure; (2) direct correspondence to
discriminator by Bayes rule.

O Cons: MLE learning requires sampling from model with expensive MCMC.

Flow-based models:

O Pros: (1) exact likelihood expression (2) direct generation via ancestral sampling

O Cons: unnatural and carefully designed transformations; less flexible and hard to extract features.

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Choice of Noisein NCE

T(6) = Epy,., [log 5525505] + B, [log 522 |

The choice of g(x) is a design issue, we expect it to satisfy:
(1) analytically tractable expression of normalized density;
(2) easyto draw samples from;

(3) close to data distribution.

If g(x) is not close to the data distribution, the classification problem would be too easy and would not require

pg to learn much about the modality of the data.

A flow model can be used to transform the noise so that the distribution is closer to data. Flow-based models
satisfy (1) and (2).

We can also replace flow-based model by VAE, which satisfies (1) approximately.

Jianwen Xie, Ying Nian Wu
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Flow Contrastive Estimation of EBM

Joint training of EBM and flow model:

* lteratively train flow q and EBM p, so that flow can be a stronger contrast for EBM.

* The learning scheme is similar to GAN, where p(x)(EBM) and q(x) (flow) are playing a mini-max game with a

unified value function

. py(z) Ga (ga(2))
minmax V (0, a) =E,, .. |log ] +E [log

a0 . po(T) + qo(x) : P60 (9a(2)) + qa (9a(2))
where E, s approximated by averaging over observed samples {x;,i = 1,..,n}, while E; is

approximated by averaging over negative samples {X;,i = 1,...,n}drawn from q,(x), with z; ~ q¢(2).

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.
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Flow Contrastive Estimation of EBM

Interpretation of the objective function

* maXx Pg: noise contrastive estimation for pg: EBM.

* min g,: minimization of Jensen-Shannon divergence for g, : flow

* max py: noise contrastive estimation for py: EBM.

* min q,: minimization of Jensen-Shannon divergence for q,: flow

o Ifpis close to data distribution, g is approximately minimizing

JSD (qa”pdata) . KL (pdataH (pdata ‘|‘ qa) /2) + KL (an (pdata "|‘ qa) /2)

o The learning gradient approximately follows

Epaaa 108 (P + qa) /2)] + KL (goll (po + qa) /2)

. J . J
Y Y
weighted MLE weighted reverse KL
(model covering) (model chasing)

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Jianwen Xie, Ying Nian Wu
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Flow Contrastive Estimation of EBM

Interpretation of the objective function

O In GAN, the discriminator D and generator G play a minimax game
minmax V(G, D) = Z_; log [D ()] + Z; log [L — D (G (2))]

D is learning a likelihood ration  Pdata (m)/ (pda,ta (37) +PG($))
U In flow contrastive estimation of EBM, the ratio is explicitly modeled by p and g:

| & m@) = 4o (90 ()
min gV (9, 2) = ). log L’S’e (i) + 4a (xi)] — {;1 i Lve (9 (21)) + ¢a (9a (Zi))”

U g as an actor (policy), p as critic (value).

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Image Synthesis

- Better synthesized results for flow; better test log-likelihood

Wi 7 Y
vy ks

MLE learning Joint training MLE learning Joint training
SVHN Cifar-10
FID score
Method SVHN CIFAR-10  CelebA
VAE [34] 57.25 78.41 38.76
DCGAN [5¢] 21.40 37.70 12.50
Glow [32] 41.70 45.99 23.32
FCE (Ours) 20.19 37.30 12.21

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Jianwen Xie, Ying Nian Wu
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Semi-Supervised Classification Learning

* EBM as a generative classifier which can be learned from unlabeled data
* A probabilistic generative framework of contrastive self-supervised learning

[1] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu. Flow Contrastive Estimation of Energy-Based Models. CVPR 2020.

Jianwen Xie, Ying Nian Wu

SSL on SVHN dataset

Method

# of labeled data

500

1000

SWWAE [ /]
Skip DGM [7]

23.56

16.61 (+0.24)

Auxiliary DGM [/ 7] 22.86
GAN with FM [ '] 1844 (£4.8)  8.11(+1.3)
VAT-Conv-small ["] 6.83 (£0.24)
on Conv-small used in [ 1, /9]

FCE-init 9.42 (£0.24)  8.50 (£0.26)
FCE 7.05 (£0.28)  6.35 (+0.12)
IT model [ 7] 7.05 (£0.30)  5.43 (£0.25)
VAT-Conv-large [ ] 18.98 (£0.26)  5.77 (+£0.32)
Mean Teacher [((] 5.45 (+0.14) 5.21 (+0.21)
IT model* [ "] 6.83 (£0.66)  4.95 (+0.26)
Temporal ensembling™* 9] 5.12 (£0.13) 442 (£0.16)
on Conv-large used in [, 4]

FCE-init 8.86 (£0.26)  7.60 (+0.23)
FCE 6.86 (£0.18)  5.54 (+£0.18)
FCE + VAT 4.47 (+£0.23)  3.87 (+0.14)
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Image Synthesis
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[1] Jianwen Xie *, Yang Lu *, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML 2016
[2] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021
[3] Ruigi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning energy-based models by diffusion recovery likelihood. ICLR 2021
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Image Inpainting

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models 95
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[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Spatial-Temporal Generative ConvNet: EBMs for Videos

Energy-based Spatial-Temporal Generative ConvNets:

The spatial-temporal generative ConvNet is an energy-based model defined on the image sequence (video), i.e.,
I ={(x,t),x € D,t € T), 1
I = ex I I
po(l) = g ep(fo(D)a(T)

where f(I;0) is a bottom-up spatial-temporal ConvNet structure that maps the video to a scalar. q is the

Gaussian white noise model ]

— 1 2
Q(I) - (27T02)|DXT|/2 eXp {_F”I” :|

MLE update formula 6411 =0, + ¢

% > Vafo(Li) - % > Vefe(ii)]
=1 =1

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Energy-Based Video Synthesis

Generating dynamic textures with both spatial and temporal stationarity

%=%= .« f(1;0)

spatial-temporal filters are convolutional
in both spatial and temporal domains.

For each example, the first one is the observed video, the other three are the synthesized videos.

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Energy-Based Video Synthesis

Generating dynamic textures with only temporal stationarity

For each example, the first one is the observed video, and the other three are the synthesized videos.

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Energy-Based Inpainting

Q: Can we learn from incomplete training data?

Unsupervised recovery

A: Learning + synthesizing (new example) + recovering (training example)

Recovery algorithm involves two Langevin dynamics:
1.  One starts from white noise for synthesis to compute the gradient. (the output is I;)

2. The other starts from the occluded data to recover the missing data. (the putput is ii)
1 & 1 <&
earningsten Oy = 0+ |~ > Vofo(l) = = > Vofo()

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Energy-Based Inpainting

Learn the model from incomplete data
(1) Video recovery

(a) Single region masks (b) 50% missing frames (c) 50% salt and pepper masks

original training recovered original training recovered

(2) Background Inpainting

original training inpainted original training inpainted

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Generative VoxelNet: Energy-Based Model on 3D Voxels

Energy-based Generative VoxelNet: Energy output
f(y;8)
3D deep convolutional energy-based model defined on the volumetric data x:

po(@) = 757 o (o@)

where f(Y; 0) is a bottom-up 3D ConvNet structure, and q(Y) is the Gaussian /

o
v

reference distribution. The MLE iterates:

At
Sampling: Tt4+At = Tt + 7me9($t) + vV Atey
| 1 & 1 & _
Learning: 041 = 0 + 1y - Z Vo fo(zi) — = Z Vo fo(Z:)
=1 =1 3D voxel input ¥

3D input

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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3D Shape Generation

ﬁﬁmﬁiéiﬁﬂ
g

chair

S QLESS L2 L HHOE

"‘ ‘.“‘ ““ Model [ Inception score |
3D ShapeNets [10] 4.126£0.193

2 3D GAN [17] 8.658+0.450
g? t % % % ” ? m ’ * 3D VAE [79] 11.015£0.420
3D WINN [36] 8.810+0.180

Primitive GAN [34] 11.520£0.330

generative VoxelNet (ours) 11.7724+0.418

Inception Score

dresser

toilet

Each row displays one experiment, where the first three 3D objects are observed, column 4-9
are synthesized, the last 4 are the nearest neighbors retrieved from the training set.

[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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High Resolution 3D Generation via Multi-Grid Sampling

*  Multi-grid modeling:

A pyramid of Generative VoxelNets

A pyramid of observed examples

*  Multi-grid sampling procedure from low resolution to high resolution:

up-pooling up-pooling

up-pooling (\4 (™

1x1x1 89

\ J\ ) \ J
Y Y Y

K steps of Langevin K steps of Langevin K steps of Langevin

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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High Resolution 3D Generation via Multi-Grid Sampling

Synthesized example at each grid is obtained by 20 steps Langevin sampling initialized from the synthesized
examples at the previous coarser grid, starting from the 1 x 1 x 1 grid.

16X 16 16
16 X 16 16

32x32x32

32x32x32

64 X 64 64

128 X 128 x 128 6464 X 64
128 x 128 x 128

b) sof:
(a) toilet (b} sotn

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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3D Shape Recovery

* Task: Given any corrupted 3D shape, whose indices of corrupted voxels are

known, recover the corruption.

* Solution: Recover the 3D object by sampling on conditional generative VoxelNet: p(xy|xz; 6)

where M contains indices of corruption, M are indices of uncorrupted voxels, and Xy [ xj are the corrupted /

uncorrupted parts of the shape.

Sampling: X~ p(xy|xg; 0) Learning by recovery

Z Vo fo(@

3!|H

n
(1) Starting from the corrupted x';, run K steps of Langevin dynamics to obtain X; | 9,., = 6 1 Vo folx,) —
t+1 =0+ | 0.fo(:)

(2) Fixing the uncorrupted parts of voxels %;(M;) « x;(M,)

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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3D Shape Recovery
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[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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3D Super Resolution

*  We perform 3D super resolution on a low-resolution 3D objects by sampling from

p(xhighlxlow; ).
* Itislearned from fully observed training pairs {(xhigh, xlow)}. In each iteration, we first up-scale x;,,, by
expanding each voxel intoa d X d X d blocks (d is the scaling ratio) of constant intensity to obtain an up-

scaled version x;u-gh of x;o, and then run Langevin dynamics staring from x;u-gh to obtain xp;gp-

g&.&itttéﬂssﬁsss
tOLLe s 29998 D
15 ‘\‘Q‘Q‘

(a) toilet

[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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3D Shape Classification

| Method | Accuracy |
Geometry Image [57] 88.4%
. ) . PANORAMA-NN [59] 91.1%
1. Train a single energy-based generative VoxelNet ECC [61] 90.0%
model on all categories of the training set of 3D ShapeNets [10] 83.5%
0 & & DeepPano [58] 85.5%
ModelNet10 dataset in an unsupervised manner. SPH [56] 79.8%
LFD [55] 79.9%
. VConv-DAE [62] 80.5%
2. Use the model (i.e., network) as a feature VoxNet [16] 0%
extractor and train a multinomial logistic 3D-GAN [17] 91.0%
. - 3D-WINN [36] 91.9%
regression classifier from labeled data based on Primitive GAN [34] 92.2%
the extracted feature vectors for classification. generative VoxelNet (ours) | 92.4%

A comparison of classification accuracy on the testing
data of ModelNet10 using the one-versus-all rule

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Generative PointNet: EBM for Unordered Point Clouds

Energy-Based Generative PointNet:

Po(X) = 570 exp fo(X)mo(X)

where X = {x,k = 1,..., M} is a point cloud that contains M unordered points, and Z(0) = [ exp fo(X) po(X)
is the intractable normalizing constant. py(X) is reference gaussian distribution. fg(X) is a scoring function that

maps X to a score and is parameterized by a bottom-up input-permutation-invariant neural network.

mlp (64, 128, 256, 512, 1024) mlp (512, 256, 64) h |S pal‘ameterlZEd by a multl_
64 128 256 512 1024
% i R - S ) 024 layer perceptron network and
| —>| | >/ = o) 256
‘g —> L | —>| < £ 64 g . . .

Slel © |3 8 2 3| o g 8§ g is a symmetric function,

s | : x : o i % g X : % " — | |— —->|:|_)§
§- #| shared = shared = shared 8 shared = shared = & §‘ which is an average p00|ing

- i ' ' ’ H S
N T L e T e I L B B | — function followed by a multi-

fo({x1, ..., xy D) = g({h(xy), ..., R(x,) ) layer perceptron network.

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021
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3D point cloud synthesis by short-run MCMC sampling from the learned model

Chair

Toilet

Bathtub

Table

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021



Since the short-run MCMC is not convergent, the sampled X is highly dependent to its initialization z. We can
regard the short-run MCMC procedure as a K-layer flow-based generator model, or a latent variable model
with z being the continuous latent variable: X = My(z,e), z~p,y(2)

* We reconstruct X by finding z to minimize the reconstruction error L(z) = ||X — Mg (2)||%, where My (2) is a

learned short-run MCMC generator.

Ground Truth
Energy-based Generative PointNet

PointFlow

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021



Linear Interpolation on latent space. Reconstruction from these latent Z
L o >

z, = (1—p)z; + pz; , p € [0,1]

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021



Point Cloud Classification

Unsupervised generative feature learning + supervised SVM learning

{
Max pooling
4
0)p)
<
<

Results on ModelNet10 Robustness test
[ Method [ Accuracy | 95

SPH [15] 79.8% o e
LFD [4] 79.9% 9 Eono e
PANORAMA-NN [33] 91.1% =" e =
VConv-DAE [31] 80.5% Sa ] ]
3D-GAN [34] 91.0% 5. 5 o0 5
3D-WINN [16] 91.9% 2. Las g
3D-DescriptorNet [44] 92.4% o =3 D
Primitive GAN [19] 92.2% =L £ B
FoldingNet [31] 94.4% @ Q75 e,
I-GAN[1] 95.4% . 50
PointFlow [50] 93.7% " - " " o T vy P o Y s T ey prry T ™
Ours 93.7% Missing Point Ratio Added Point Ratio

Standard Deviation for Adding Noise

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021

Jianwen Xie, Ying Nian Wu
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Energy-Based Continuous Inverse Optimal Control

~10

1
Po(x) = 7, &P [fo(x)]

I

-15

Energy-Based Model Inverse Optimal Control
i Use cost function as the energy function in EBM probability distribution of trajectories;
* Perform conditional sampling as optimal control;
* Take advantage of known dynamic function and do back-propagation through time;
* Define joint distribution for multi-agent trajectory predictions.

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Energy-Based Continuous Inverse Optimal Control

* Optimal Control: finite horizon control problem for discrete time t € {1, ..., T}.

1
2
3
4.
5
6
7

states X = (xt, t=1,.., T) {longitude, latitude, speed, heading angle, acceleration, steering angle}
controlu = (u,t = 1,..,T) {change of acceleration, change of steering angle}

The dynamics is deterministic, x; = f(x;_1,u;), where f is given.

The trajectoryis (x,u) = (x;,ust = 1,..,T).

The environment condition is e.

The recent history h = (x;, u;, t = —k, ...,0)

The cost function is Cg(X, u, e, h) where 0 are parameters that define the cost function

* The problem of inverse optimal control is to learn 8 from expert demonstrations

D = {(xi,ui, e, hi),i = 1, ...,n}.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving
Workshop at NeurlPS 2020
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Energy-Based Continuous Inverse Optimal Control

Energy-Based Model for Inverse Optimal Control:

1
JZIQ | e,h) = M exp [—CB(X, u, e, h)]

where Zy(e,h) = /exp [—Cp(x,u,e, h)]du is the normalizing constant.

* Xxis determined by u according to the deterministic dynamics.
* The cost function Cy (X, u, e, h) serves as the energy function.

* For expert demonstrations D, u; are assumed to be random samples from pg (u|e, h), so that u; tends to

have low cost Cy(Xx,u, e, h).

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving
Workshop at NeurlPS 2020
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Energy-Based Continuous Inverse Optimal Control

Parameters 6 can be learned via MLE from expert demonstrations D = {(x;,u;,e;, h;),i =1, ...,n}.

1 n
The loglikelihood  L(f) = - E log pg (u; | €, h;)
i=1

9,

1< 0
The gradient L'(#) = " Z[Epe(u|ei,hq;) (@09 (x,u, €, hz)) —%CB (xi, a4, €4, hz)]
=1

i’,(g) = l Z |:£09 (ii:ﬁia €i, hz) - %Cﬂ (Xia u;, €;, h%)]

(X;,U;) can be either sampled through Langevin dynamics or predicted through optimization method (that is, seek

the minimum cost). During sampling, the trajectory will be roll-out every step by dynamic function and perform back-

propagation through time.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving

Workshop at NeurlPS 2020

ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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Energy-Based Continuous Inverse Optimal Control

Dataset: NGSIM-US101
* Collected from camera on US101 highway.
* 10 frame as history and 40 frames to predict. (0.1s / frame)

* 831 total scenes with 96,512 5-second vehicle trajectories.
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m Ground Truth; = EBM; m GAIL; = Other Vehicle; m Lane.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving
Workshop at NeurlPS 2020
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Multi-Agent Prediction

There are K agents: States X = (Xk,k =1,2, ...,K), and controls U = (uk,k =12,..,K)

All agents share the same dynamic function, x{ = f(xf_;, uf).

The overall cost function Cg(X, U, e, h) = YX_, Co(x¥, u*, e, h¥)

po(U | e,h) = ——=exp[~Co(X, U, e, h)
Z 6 (6, )
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5
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Multi-agent prediction on NGSIM US101 dataset (Grey: Lane ; Red: Ground truth ; Green: Prediction )

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. Machine Learning for Autonomous Driving
Workshop at NeurlPS 2020
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



External learning v.s. Internal Learning

External learning:

Learn a distribution of images within a set of natural images

Internal learning:

Learn an internal distribution of patches within a single natural image

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Patchwise Generative ConvNet for Internal Learning

* A pyramid of EBMs, {pgs(l(s)),s =0, ..., S}, trained against a pyramid of images of different scales {I(s),s =

0,..,S)

{po(1®)) = 707

exp [fgs(I(s))} ,s=0,..,5}

* Each py, (1)) is responsible to synthesize images based on the patch distribution learned from the image

1) at the corresponding scale s

e Fors =0,..,S

2 = gt (1) - 53 [ ()]

i=1

where a pyramid of synthesis {i(s),s =1,..,5}

are obtained via sequential multi-scale

sequential sampling.

(a) -
Synthesis Real
B A AN 17| | . R S { (0) AN P
" M o &

Upsample l
MCMC

lUpsample
L]

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021

Jianwen Xie, Ying Nian Wu

ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Multi-Scale Sampling

| up-sample
up-sample up-sampile
. v v 0 M O
e e £ , Rl ] { B LELEE
sc:ﬂe() sc;cl sc;Ieg scajeg sc:ﬁc‘;

up-sample,

Z ~Uq ((-1,1)9) s=0

Iy = -1
Upsample (IK(S_I)) s> 0

2
) _x(s) 07 0O <(5) (5)
Itj—l . Its h 2 91 fo. (Its ) + 5fts

where t =0,.., K®) —1

~~
scaler

multi-scale sequential sampling process starting from a randomly initialized Z

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Unconditional Image Generation Results

E&E; i__i'f

2 scales

Random Image Samples. Each row demonstrates a single training example Influence of different
and multiple synthesis results of various aspect ratios. numbers of scales

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Single Image Super Resolution

Super-Resolution results from BSD100. The first column shows the initial image used for training.

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Image Manipulation

Train Image PatchGenCN (ours)

Image harmonization

Paint to Image Image Editing

Train Image_ i : Train Image Edited Input

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018

[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018



Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Conditional Learning as Problem Solving

* Let x be the D-dimensional output signal of the target domain, and ¢ be the input signal of the source
domain, where “c” stands for “condition”. c¢ defines the problem, and x is the solution.

* The goal is to learn the conditional distribution p(x |c) of the target signal (solution) x given the source
signal ¢ (problem) as the condition. p(x |c) will learn from the training dataset of the pairs {(x;,c;),
i =1,..,n}

e Examples:c = x

-2 5%
- AR 2

Label-to-image synthesis Image inpainting Image-to-image synthesis
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Fast-Thinking and Slow-Thinking

The cooperative learning scheme is extended to the conditional learning problem by jointly training a
conditional energy-based model and a conditional generator model.

They represent (problem c, solution x) pair from two different perspectives:

1
* The conditional energy-based model is of the following form  py(x|c) = Z20c.0) exp|fo(x,c)]

solve a problem via slow-thinking (iterative): TiiAr = Ty + ﬁvmfe (z¢,c¢) + Vv Ate,
2

«  The conditional generator is of the following form = = ga(2,¢) + €,z ~ N(0,13), e ~ N(0,0%Ip)

solve a problem via fast-thinking (non-iterative): & = g (2, €)

Fast-thinking v.s. Slow-thinking

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Cooperative Conditional Learning

fast-thinking initializer - o —
c Initialize !
| et 1 B
2~ N(O, I);g; — ga(z,c) +een N(O,U2I) E (—nnltlal solutlonJ' =,
I I synthesis
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1 @ SOIvey|® @ : ----- > sampling
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Diagram of fast thinking and slow thinking conditional learning

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Image generation conditioned on class label
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[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021



Image-to-Image Generation

condition ground truth Ppix2pix cVAE-GAN CVAE-GAN++ BicycleGAN initializer (ours) solver (ours)

f(v,C;0) C (condition image)

@([Y, ¢

condition

skip connection

b
'
\
lm
'
b

(X, 2(0)])
Y=g9X,Ca)

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Unsupervised Image-to-Image Translation

®* Image-to-image translation has shown its importance in computer vision and computer graphics.

®* Unsupervised cross-domain translation is more applicable than supervised cross-domain
translation, because different domains of independent data collections are easily accessible.

Monet Van Gogh Cezanne Ukiyo-e

i e e
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Cycle-Consistent Cooperative Network

* Twodomians{x;; i=1,..,n,} € X and {yi; i=1, ...,ny} € Y without instance-level correspondence

* Cycle-Consistent Cooperative Network (CycleCoopNets) simultaneously learn and align two EBM-generator pairs

1
Y= X {p(x;0x),Gy_x(y;ax)} p(@:0x) = 75 exp [f (2:62)] po(e)
X —YV:{pyby),Gxoy(r;ay)}

p(1:0y) = 5z exp 1 (4:0.)]mo(v)

where each pair of models is trained via MCMC teaching to form a one-way translation. We align them by
enforcing mutual invertibility, i.e.,

r; = Gy x (Gxoy (Tiay) s ax)

yi = Gaoy (Gysa (yisax) say)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

true distribution
EBM update

LVM in domain x
EBM in domain x

translated example in domain x

<< | 4]
e |41

observed example in domain x

p(x) ()
MCMC/Langevin
LVM update
. ®
LVM in domain y
EBM in domain y

translated example in domain y

observed example in domain y

Step (1): cross-domain mapping

{xi ~ paata (@) }imy {0 = Groy (zi30Y) ey
{yi ~ pdata W)}y {8 = Gyox (Yi;ax) by

Starting from {g; }

Starting from {i;} /"

n
=17

run [ steps of Langevin revision to obtain {gi}f'zl

" ,run [ steps of Langevin revision to obtain {Z;};_,

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-

Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

—— true distribution =—p MCMC/Langevin p(x) p(y)

=== EBM update === LVM update

=3 LVMindomainx == LVMindomainy @

= EBM in domain x ——— EBM in domain y
X  translated example in domain x o  translated example in domain y > x Y A >y
X observed example in domain x o observed example in domain y - Gy-x

Step (2): density shifting
Given {2z}, and {#}"_,, update 95:_3-'_1) = QS) + 9., A (95:3))

Given {y}"_, and {7}, update 0§f+1) = Bg’) + 70, A (Bgf))

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

—— true distribution = MCMC/Langevin p(x) p(¥)
== EBM update == LVM update 0, o,
=3 LVMin domain x == LVMindomainy
—— EBMin domain x —— EBMindomainy 3) x; Xi/%; Yi i/ Vi
X  translated example in domain x o  translated example in domain y 1 P > x P A >y
X observed example in domain x o observed example in domain y A Ax_'é — L
- s

Step (3): mapping shifting with cycle consistency

7
Lteach (GX) — Z ||ﬁ:’"b . Gy—>X (yi: a-)f')”z

=1

Lieach (Oéy) - Z ||g’& - GX—KV (ZL'@, Ody)HQ

1=1

mn mn
Leyae (x,0y) = Y |2 — Gyox (Groy (wizay)sax)|* + Y 14 — Gxoy (Gy—x (yisax) say)||?
i=1 1=1

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Unsupervised Image-to-Image Translation

rigin:\l Moncl . \n Gogh _— } Cezanne JUki)'o-c.‘ ‘ Input pycleGAN UNIT DRIT

winter = summer

Collection style transfer from photo realistic images to artistic styles Season transfer

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Unsupervised Sequence-to-Sequence Translation

* The CycleCoopNets framework can be generalized to learning a translation between two domains of
sequences where paired examples are unavailable.

* For example, given an image sequence of Donald Trump's speech, we can translate it to an image
sequence of Barack Obama, where the content of Donald Trump is transferred to Barack Obama but

the speech is in Donald Trump's style.

* Such an appearance translation and motion style preservation framework may have a wide range of
applications in video manipulation.

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Unsupervised Sequence-to-Sequence Translation

Two medications are made to adapt the CycleCoopNets to image sequence translation.

(1) learn a recurrent model in each domain to predict future image frame given the past image frames in a

sequence. Let R, and Ry denote recurrent models for domain X and Y respectively. We learn R,, and Ry by
minimizing

Liec (Rx) Z |Zerkt1 — R (wreer) |

Lrec (RJJ) _— Z ||yt—|—k:—|—1 . Ry (yt:H—k‘)H2
t

where Ltttk — (LEt, ...,$t+k) and Yt:it+k = (yta ---ayt-l—k)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021

Jianwen Xie, Ying Nian Wu
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Unsupervised Sequence-to-Sequence Translation

(2) With the recurrent models, we modify the loss for G to take into account spatial-temporal information

Lyt (Gxy—y, Ry, Gy x)
= |tsrs1 — Gyox (Ry (Gxsy (@)
t

Ly (Gysx,Rxy,Gx—y)

— Z ||yt+k:+1 = GX_>J) (RX (GY—>X (yt:t—i-k)))”Z
t

The final objective of G and R is given by

minG,R L(Ga R) — Lrec (RX) + Lrec (Ry) + A1Ltea.ch (Gy—w)
+A1 Lteach (Gx—y) + AaLst (Gx—y, Ry, Gy, x)
+XoLgt (Gysx, Ry, Gry)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Input

Image sequence translation

Output

(a) Barack Obama to Donald Trump

IR0
Telalols14]4

(b) violet flower to yellow flower

(a) translate Barack Obama’s facial
motion to Donald Trump.

Input

(b) translate from the blooming of a violet
flower to a yellow flower.

Output

(c) translate the blooming of a purple
flower to a red flower.

Input

Output

(c) purple flower to red flower

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021



Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Saliency Prediction

® Saliency prediction aims at highlighting salient object regions in images.

RGB image (input)

Og Ia

® Salient object detection can be useful for a wide range of object-level applications.

®* Existing salient object detection methods mainly focus on supervised learning.

®* Most existing supervised learning methods seek to learn deterministic mapping between image and Saliency.

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generative Cooperative Saliency Prediction

Generative saliency prediction aims at learning a distribution of saliency Y given an image X, i.e., p(Y|X),
and performs saliency prediction via sampling Y from the learned distribution, i.e., Y ~ p(Y'|X).

®* The cooperative saliency prediction (Sa/CoopNets) consists of an energy-based model serving as a fine but
slow predictor and a latent variable model serving as a coarse but fast predictor.

®* The energy-based model and the latent variable model are jointly trained by cooperative learning
algorithm.

®* The cooperative prediction is performed by a coarse-to-fine sampling.

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. arXiv 2021
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Generative Cooperative Saliency Prediction

(1) Energy-based model serving as a fine but slow predictor

Training data: {(XG, Y5 Hey (X isanimage, and Y is a saliency map.)

_ opY,X) 1
- fpg(Y,X)dY - Z(X;6)

po(Y | X) exp [~Up (Y, X)]

The energy function Uy (Y, X) parameterized by a bottom-up neural network plays the role of a trainable objective
function in the task of saliency prediction.

When the Ug(X,Y) is learned and an image X is given, the prediction of saliency Y can be achieved by
Langevin sampling Y ~ pg(Y|X)

52 8U, (Y;, X
Yt+1:Yt——M

5 EY% +§A¢,Ath(O,ID)

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. arXiv 2021
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Generative Cooperative Saliency Prediction

(2) Laten variable model serving as a coarse but fast predictor

Training data: {(X..Y:)} (X is animage, Y is a saliency map, and Z is latent variables)
Z ~N(0,14),Y = Go(X,Z) + €6,¢ ~ N (0,0%Ip)

which defines an implicit conditional distribution of saliency Y given an image X, i.e., p,(Y|X) =
[0, (Y|X,Z)dZ, where p, (Y|X,Z) = N (G (X, Z), a°1p).

The saliency prediction can be achieved by an ancestral sampling that first samples an injected Gaussian white
noise Z and then maps the noise and the image X to the saliency Y.

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. arXiv 2021
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Generative Cooperative Saliency Prediction

Saliency prediction by ancestral Langevin sampling

Langevin Sampler iterative slow Negative energy function

Ancestral Sampler Non-iterative fast No value function

Ancestral Sampler (fast thinking initializer) + Langevin Sampler (slow thinking solver)

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Generative Cooperative Saliency Prediction

Cooperative Training of two predictors: Iterate steps (1) (2) and (3)

(1) Ancestral Langevin sampling
Z~N(0,14),Yo=Guo(X,Z) +€e,e ~ N (0, O’QID)

52 90U, (Y, X)

Y,H_l:Yt—E EY% —I—5At,AtNN(O,ID);tZO,l,...,T

(2) Langevin sampler learns from  {(X;,Yi)}in,  L(0) = 1 Zlﬂg}?ﬂ(YdXi)
n
i=1
Yi ~ po (Y|X; U RS S B v
i ~ po (Y]X3) Do D ggUeVe X = 03 FpUa(¥i X,

=1

5 1 — -
(3) Ancestral sampler learns from {(X;,Y;)} ?:1 L(0) = " Zlogpa(}ﬂXi)
1=1

n

. N 1 N B .
Zz' et pa(ZlyiaXi) Aa = _Z p(yﬁ - Ga(Zﬁ'aXi))a_aGa(ZiaXi)

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. arXiv 2021
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Given an image, we can sample different saliency maps with the learned model SalCoopNet: pgo(Y|X), pe (Y |X).

Our Samples

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. arXiv 2021



Performance comparison with baseline saliency prediction models

Generative Cooperative Saliency Prediction

DUTS [37] ECSSD [56] DUT [57] HKU-IS [23] THUR [2] SOC [3]
Method Sa TFgTETMUSa TFs TEc T MUSa TFg TE: T MU Sa TFg TEe TM [|Sa TFg T E¢ tM USa TFg TE: T M|
Deep Fully Supervised Models

DGRL [35] |.846 .790 .887 .051(.902 .898 .934 .045|.809 .726 .845 .063|.897 .884 .939 .037|.816 .727 .838 .077|.791 .348 .820 .137
PiCAN [25] [.842 .757 .853 .062|.898 .872 909 .054|.817 711 .823 .072|.895 .854 910 .046|.818 .710 .821 .084|.801 .332 .810 .133
F3Net [42] |.888 .852 .920 .035(.919 .921 .943 .036|.839 .766 .864 .053|.917 910 .952 .028|.838 .761 .858 .066|.828 .340 .846 .098
NLDF [27] |.816 .757 851 .065(.870 .871 .896 .066|.770 .683 .798 .080|.879 .871 914 .048|.801 .711 .827 .081|.816 .319 .837 .106
PoolN [24] |.887 .840 .910 .037(.919 .913 .938 .038|.831 .748 .848 .054|.919 .903 .945 .030|.834 .745 .850 .070|.829 .355 .846 .098
BASN [33] |.876 .823 896 .048(.910 913 938 .040|.836 .767 .865 .057|.909 903 .943 .032|.823 .737 .841 .073|.841 .359 .864 .092
AFNet [0] .867 .812 .893 .046|.907 901 .929 .045|.826 .743 .846 .057|.905 .888 .934 .036(.825 .733 .840 .072|.700 .312 .684 .115
MSNet [44] |.862 .792 883 .049(.905 886 .922 .048|.809 .710 .831 .064|.907 .878 .930 .039|.819 .718 .829 .079| - - - -

SCRN [46] |.885 .833 .900 .040(.920 910 .933 .041|.837 749 .847 .056|.916 .894 935 .034|.845 758 .858 .006|.838 .363 .859 .099
ITSD [66] .885 .840 913 .041|.919 917 .941 .037|.840 .768 .865 .061|.917 904 947 .031|.836 .753 .852 .070|.773 .361 .792 .166
LDF [42] 892 .861 .925 .034|.919 923 943 .036|.839 .770 .865 .052|.920 .913 953 .028|.842 .768 .863 .064|.835 .369 .856 .103
SalCoopNets|.890 .856 .924 .034|.926 .930 .954 .031|.852 .788 .879 .046|.923 .917 .957 .026|.847 .771 .867 .061|.839 368 .860 .092

Weakly Supervised Models
SSAL [62] |[.803 .747 865 .062|.863 .865 .908 .061|.785 .702 .835 .068|.865 .858 .923 .047|.800 .718 .837 .077|.804 .309 .793 .143
NED [61] 796 732 .829 .067|.852 .849 .871 .071|.782 .694 .810 .074|.861 .852 .904 .048(.800 .713 .830 .079|.783 .300 .791 .153
SalCoopNets| .813 .755 .863 .059(.872 .874 .910 .060|.791 .707 .840 .061|.871 .859 .929 .042|.804 .717 .839 .074|.812 .314 .806 .137
Alternative Generator Models

CVAE .866 .824 .900 .041|.906 910 .932 .043|.816 .737 .844 .055|.910 .903 .943 .032|.835 .755 .859 .065|.843 .361 .866 .098
CGAN 846 785 .883 .049|.900 .895 .928 .047|.799 .705 .828 .063|.894 875 930 .039(.823 .732 850 .071|.841 .362 .859 .103

Jianwen Xie, Ying Nian Wu

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. arXiv 2021
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Weakly-Supervised Saliency Prediction

X:input image fully annotated GT  Yincompiete: Scribble annotation

A weakly supervised setting: Learn predictors from (X,Y), where Y is a scribble annotation (incomplete ground truth)

We made a small modification on the current algorithm to adapt it to this task.
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Generative Cooperative Saliency Prediction

For each iteration, we Add the following two steps to recover the scribble training data Y
(1) Recovery by the latent variable model

(infer latent variables of the scribble data, and then recover the missing region by mapping the inferred latent
variable back to the saliency domain)

Z ~ Pot) (Z|Kncomp]ete 3 X)
I 5ver = Ga(t) (Za X)

(2) Recovery by the energy-based model

(starting from initially recovered Y ecover Provided by the latent variable model)

2
}/Hl — }/t - 5 + 5Atg At ~ N (03 ID) 3 YO _ }/recover;

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. arXiv 2021
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Results of the weakly-supervised saliency prediction by the SalCoopNets

I‘I‘N‘

Scribble GT Recovered GT Image Our Samples

(a) Training Process (b) Testing Process

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. arXiv 2021



Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Latent Space Energy-Based Prior Model

po(T,2) = pa(2)ps(|2)

Pa(z) = ﬁ exp(fa(2))po(2)
T =gp(2) +e T

* Standing on a top-down generator model.

x: observed example. z: latent vector.
Jal2
L)
<

* Correcting non-informative prior py.
* Captures regularities/rules/constraints or objective/cost/value probabilistically in latent space.

* Sampling in latent space is efficient and mixes well.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Text Generation

RNN/auto-regressive generation model for text.
z is a thought vector about the whole sentence and controls the generation of the sentence at each time step.

Forward Perplexity (FPPL), Reverse Perplexity (RPPL), and Negative Log-Likelihood (NLL) for the latent space
energy-based prior model and baselines on SNLI, PTB, and Yahoo datasets.

SNLI PTB Yahoo
Models FPPL RPPL NLL FPPL RPPL NLL FPPL RPPL NLL
Real Data 23.53 - - 100.36 - - 60.04 - -
SA-VAE 39.03 46.43 33.56 147.92 210.02 101.28 128.19 148.57 326.70
FB-VAE 39.19 43.47 28.82 145.32 204.11 92.89 123.22 141.14 319.96
ARAE 4430 82.20 28.14 165.23 232.93 91.31 158.37 216.77 320.09
Ours 27.81 31.96 28.90 107.45 181.54 91.35 80.91 118.08 321.18

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
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. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
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. Unsupervised sequence-to-sequence translation
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Molecule Generation

& O»—" \g} (;;:\_o ‘5_( o TR P /‘o“-(‘{o’o \?)g P TR e
Let x be an observed molecule
" PR . represented in SMILES strings

2o Ay ?*g'* o o8 4 o g 0 Oae
ZNpa(Z)v m~p5($|z),

A aoR ‘{S}:Ld( PG Ao W oo ?‘-ov & i
where

[s¥ved Q(‘-\-tr YO0 5‘2; QD Qor& ox® Q0 Adh Quor

Pal2) = 537 2 (fal2) 0(2

. 5. e T
S Qo U&Q TR R R S e Sl R pa(x|z) = [[ pa(a® | =D, ..., 271 2)

t=1

(a) ZINC (b) Generated

Sample molecules taken from the ZINC dataset (a) and generated by our model (b)

(1) RNN/auto-regressive model for SMILES sequence (2) EBM prior captures chemical rules implicitly

[1] Bo Pang, Tian Han, Ying Nian Wu. Learning Latent Space Energy-Based Prior Model for Molecule Generation. Workshop at NeurlPS, 2020
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Molecule Generation

Evaluations
*  Validity: the percentage of valid molecules among all the generated ones
*  Novelty: the percentage of generated molecules not appearing in training set

* Uniqueness: the percentage of unique ones among all the generated molecules

Model Model Family  Validity w/ check  Validity w/o check  Novelty = Uniqueness
GraphVAE (Simonovsky et al., 2018) Graph 0.140 - 1.000 0.316
CGVAE (Liu et al., 2018) Graph 1.000 - 1.000 0.998
GCPN (You et al., 2018) Graph 1.000 0.200 1.000 1.000
NeVAE (Samanta et al., 2019) Graph 1.000 - 0.999 1.000
MRNN (Popova et al., 2019) Graph 1.000 0.650 1.000 0.999
GraphNVP (Madhawa et al., 2019) Graph 0.426 - 1.000 0.948
GraphAF (Shi et al., 2020) Graph 1.000 0.680 1.000 0.991
ChemVAE (Gomez-Bombarelli et al., 2018) LM 0.170 - 0.980 0.310
GrammarVAE (Kusner et al., 2017) LM 0.310 - 1.000 0.108
SDVAE (Dai et al., 2018) LM 0.435 - - -
FragmentVAE (Podda et al., 2020) LM 1.000 - 0.995 0.998
Ours LM 0.955 - 1.000 1.000

[1] Bo Pang, Tian Han, Ying Nian Wu. Learning Latent Space Energy-Based Prior Model for Molecule Generation. Workshop at NeurlPS, 2020

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Anomaly Detection

* If the generator and EBM are well learned, then the posterior pg(z|x) would form a discriminative latent

space that has separated probability densities for normal and anomalous data.

* Take samples from the posterior of the learned model and use the unnormalized log-posterior log pg (x, z)

as the decision function.

Heldout Digit | 1 | 4 | 5 | 7 | 9
VAE 0.063 0.337 0.325 0.148 0.104
MEG 0.281 = 0.035 | 0.401 +0.061 | 0.402 - 0.062 | 0.290 + 0.040 | 0.342 + 0.034

BiGAN-o 0.287 £0.023 | 0.443 £0.029 | 0.514 £ 0.029 | 0.347 £ 0.017 | 0.307 = 0.028
Latent Space EBM | 0.336 £ 0.008 | 0.630 £ 0.017 | 0.619 + 0.013 | 0.463 £ 0.009 | 0.413 £ 0.010

AUPRC scores (larger is better) for unsupervised anomaly detection on the MNIST dataset.

[1] Bo Pang, Tian Han, Ying Nian Wu. Learning Latent Space Energy-Based Prior Model for Molecule Generation. Workshop at NeurlPS, 2020
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Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks * Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Saliency Prediction

(1) aconvolutional encoder-decoder for saliency map generation

(2) aloss function to guide the encoder-decoder for parameter updating

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Saliency Prediction

1. Encoder-decoder structure: the convolution operation makes the model less effective in modeling the
global contrast, which is essential for salient object detection.

Solution: vision transformer with self-attention (e.g., Swin)

2. The conventional deterministic one-to-one mapping mechanism makes the current framework
impossible to estimate the pixel-wise confidence of model prediction or learn from incomplete data.

Solution: generative modeling of saliency prediction (e.g., latent space energy-based prior model)

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generative Transformer with Energy-based Prior

I: input image. z: latent vector. S: saliency map Transformer Encoder

@ negregation [ To(h2)
Transformer s ="1Tpy (I’ Z) + € ’
- 1
EBM prior Z ~ Pq (Z) pa(Z) = Z(a) eXp(fa(Z))po(Z)
Residual noise €~ N(O, O'ZID)

EBM defined on z, standing on a latent space of the transformer.

Exponential tilting of py(2), po(2) is non-informative isotropic Gaussian
Empirical Bayes: learning prior from data

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
Jianwen Xie, Ying Nian Wu

ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generative Transformer with Energy-based Prior

Training data {(Si,li),i =1, ;n} let 5 = (9705) s T (I Z) +
— 44\, €

Maximum Likelihood L(/3) = Zlogpg(siﬂi) Z ~ Dg (z)

_Zlog Upa si, zi|L; )dz] e ~N(0,0%Ip)

— Zlog [/pa(zz po(silli, 2:)d ]

Pa(2) = a7 o (E)R0() po(s|L 2) = N (Ty(L 2, 02 p)

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generative Transformer with Energy-based Prior

Log-likelihood let 3 = (0, ) s=Ty(L,z)+ ¢
L(B) = Zlogpﬁ(silli) z ~ pa(2)
i=1
e ~N(0,0°Ip)
Gradient for a training example

Viglogps(sll) = E,,z1s.0) [V logps(s, z|1)]

=E,,(z1s.0[Vs(log pa(2) + log pe(s|L 2))]

=Ep,(z1s.0)[Valogpa(2)] + Ep, 2151 [ Ve log po(s|I, 2)]
(1) (2)

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generative Transformer with Energy-based Prior

vf)’ logpﬁ(su) - Epg (z]s.0) [Voz log pa (Z)] + Epg (z|s.,0) [V@ logpﬁ (S|Ia Z)]
(1) (2)

(1) Epﬁ(z|s,I) [va logpa(z)] s Epﬁ(z|s,1) [vafa(z)] - Epa(z) [Vafa(z)]

sampling from posterior sampling from prior

po(2) = 75 exp(fa(2)po(2)

1
(2) Epﬁ (z]s,I) [Vg logpﬂ (S|Ia Z)] - Epg(z|s,1) [O‘2(8 — Ty (Ia Z))VBTB (I: Z)

sampling from posterior

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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Generative Transformer with Energy-based Prior

(1) Sampling from prior via Langevin dynamics

. 1
{27} ~ pal2) o exp(—Ua(2)) et Up(2) = —fa(2) + 55112II°
201 = 2 — 6VUa(20) + V206, 20 ~ po(2), e ~ N(0,1), (@)

(2) Sampling from posterior via Langevin dynamics

{7} ~ps(2ls,I)  ps(ls, 1) = ps(s, 2[0)/ps(s|l) = pal2)pe(s|L, 2) /ps(s|T)

1
2t01 =2t — 0 {VzUa(z) — = (s —Tp(L,2)) V. Ty (L, 2z¢) | + V20e, 2o ~ po(2), €0 ~ N(0,1) (b)

o2

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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Generative Transformer with Energy-based Prior

At each iteration, for each (Sl-,ll-)

* Sample s=Ty(L,2) + e
{7} ~ ps(2lsi, L) (27} ~ pal2) z~ pa(2)
e ~N(0,0°Ip)
* Update
T 1 n
VQZEZ[ afa EZ afa
1=1 i=1
Vo = %; [_2( — To(L;, 27 ))VeTy(L;, 2 )] ,

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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Generative Transformer with Energy-based Prior

Algorithm 1 Maximum likelihood learning algorithm for generative vision transformer with energy-
based latent space for saliency prediction

Input: (1) Training images {I;}; with associated saliency maps {s;}:; (2) Maximal number of learning
iterations M ; (3) Numbers of Langevin steps for prior and posterior { Ko, K }; (4) Langevin step sizes for prior
and posterior {do, 01 }; (5) Learning rates for energy-based prior model and transformer {£., &0}

Output: Parameters 6 for the transformer and « for the energy-based prior model

I: Initialize € and «

2: fort < 1to M do

3: Sample observed image-saliency pairs {(I;. s;) } '

4: For each (1, s;), sample the prior z; ~ pa, (z) using Ky Langevin steps in Eq.(7) with a step size dy.

5 For each (I;. s;). sample the posterior z;” ~ pg, (2|s:, I;) using K Langevin steps in Eq.(8) with a step
size 01.

6 Update energy-based prior by Adam with the gradient Ve« computed in Eq.(9) and a learning rate &,,.

7: Update transformer by Adam with the gradient V# computed in Eq.(10) and a learning rate &g.

8: end for

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generative Transformer with Energy-based Prior

s=Ty(L,z)+ €
2z~ Pal(2)
e ~ N(0,0%Ip)

Image GT = Predictions by sampling

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Generative Transformer with Energy-based Prior

Table 1: Performance comparison with benchmark RGB salient object detection models.

DUTS [67] ECSSD [79] DUT [80] HKU-IS [38] PASCAL-S [40] SOD (48]
Mehod _|So 1Py 1E¢ TM UiSa 1Fy TE¢ TM USa 1y 1Ee tM USa 1F) 1E¢ TM USa 1Fy TEe TM UiSe thy TEe tM L
CPD[72] | 869 821 808 013 000 937 040| 825 742 847 056|006 802 038 .034| 848 810 882 071|799 779 811 088
SCRN [73] | .885 .833 .900 .040 920 910 933 041|837 .749 847 .056|.916 .894 .935 .034|.869 833 892 .063|.817 .790 .829 .087
PoolNet [41]| .887 840 910 .037|.919 913 938 .038|.831 .748 .848 .054|.919 903 .945 .030| 865 835 .896 .065|.820 .804 834 .084
BASNet [58] .876 823 896 .048| 910 913 938 .040|.836 767 .865 .057|.909 903 .943 .032| 838 818 .879 .076|.798 792 827 .094
EGNet [88] | .878 824 898 .043| 914 906 933 .043|.840 755 855 .054| 917 900 .943 .031|.852 823 881 .074|.824 811 843 .081
F3Net [70] | 888 852 920 .035| 919 921 943 036|839 766 864 053|917 910 952 028 861 835 898 062|824 814 850 077
ITSD [90] | .886 841 917 .039|.920 916 .943 .037|.842 767 .867 .056|.921 906 .950 .030| 860 830 .894 .066|.836 .829 867 .076
Ours 912 .891 951 .025].936 .940 .964 .025|.858 .802 .892 .044|.928 .926 .966 .023|.874 .876 918 .053|.850 .855 .886 .064

Table 2: Performance comparison with benchmark RGB-D salient object detection models.

NJU2K [29] SSB [52] DES 9] NLPR [55] LESD [39] SIP[16]
Method  |So 1Fp 1E¢ TM USa 1Fs 1E¢ TM USa 1F5 TE¢ TM USa 1Fs 1Ee TM USa 1Fp 1E¢ tM USa 1Fg 1Ee TM L
BBSNet [17] 921 902 938 .035] 908 883 928 .041] 933 910 949 .021|.930 .896 950 .023| 864 843 883 .072| 879 .868 906 .055
BiaNet [86] | 915 903 934 .039| 904 879 926 .043|.931 910 948 021|925 894 948 024|.845 834 871 .085|.883 .873 913 .052
CoNet [27] | 911 903 944 .036| 896 877 939 .040|.906 880 939 .026|.900 859 937 .030|.842 834 886 .077|.868 .855 915 .054
UCNet [83] | 897 886 .930 .043|.903 884 938 .039].934 919 967 019|920 891 951 .025|.864 855 901 .066|.875 .867 914 .051
JLDCE [18] | 902 885 935 .041|.903 873 936 .040|.931 907 959 .021|.925 894 955 .022|.862 848 .894 .070|.880 .873 918 .049
Ours 932 927 959 .026|.921 905 .953 .030|.047 .940 .979 .014|.938 .922 .966 .019|.889 .876 .920 .052|.907 .913 .943 .035

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021

Jianwen Xie, Ying Nian Wu
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Visual comparison of saliency predictions by the generative transformer with EBM prior (4t
row) and the current state-of-the-art saliency model (3 row), as well as the ground truths
(2" row).




Part III: Applications

1. Energy-Based Generative Neural Networks 3. Latent Space Energy-Based Models
. Generative ConvNet: EBMs for images . Text generation
. Spatial-Temporal Generative ConvNet: EBMs for videos . Molecule generation
. Generative VoxelNet: EBMs for 3D volumetric shapes . Anomaly detection
. Generative PointNet: EBMs for unordered point clouds . Saliency prediction using transformer with energy-based prior
. EBMs for inverse optimal control and trajectory prediction . Trajectory prediction
. Patchwise Generative ConvNet: EBMs for internal learning . Semi-supervised learning
2. Energy-Based Generative Cooperative Networks *  Controlled text generation
. Unconditioned image, video, 3D shape synthesis
. Supervised conditional learning
. Unsupervised image-to-image translation
. Unsupervised sequence-to-sequence translation
. Generative saliency prediction
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Trajectory Prediction

z: latent thought/belief of whole trajectory (event)
* Prediction as inverse planning
* Energy as cost function, defined on whole trajectory

* Goes beyond Markov decision process framework

(1) non-Markovian dynamics

(2) non-stepwise cost

Figure 2. Qualitative resulis of our proposed method across 4 different scenarios in the Stanford Drone. First row: The best prediction result
sampled from 20 trials from LB-EBM. Second row: The 20 predicted trajectories sampled from LB-EBM. Third row: prediction results of
agent pairs that has social interactions. The observed trajectories, ground truth predictions and our model’s predictions are displayed in
terms of white, blue and red dots respectively.

[1] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory Prediction with Latent Belief Energy-Based Model. CVPR, 2021

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Trajectory Prediction

| ETH | HOTEL | UNIV | ZARAI | ZARA2 | AVG

| ADE | FDE Linear * [1] 133/2.94 | 0.39/0.72 | 0.82/1.59 | 0.62/1.21 | 0.77/1.48 | 0.79/1.59

i SR-LSTM-2 * [63] || 0.63/1.25 | 0.37/0.74 | 0.51/1.10 | 0.41/0.90 | 0.327/0.70 | 0.45/0.94

SSGIﬂ% [ i g Z; g Z?'ZZ S-LSTM [1] 1.09/235 | 0.79/1.76 | 0.67/1.40 | 0.47/1.00 | 0.56/1.17 | 0.72/1.54

- PL] : : S-GAN-P[15] 0.87/1.62 | 0.67/1.37 | 0.76/1.52 | 0.35/0.68 | 0.42/0.84 | 0.61/1.21

MATF [64] || 22.59 | 33.53 SoPhie [50] 0707143 | 0.76/1.67 | 0.5471.24 | 0.30/0.63 | 0.387/0.78 | 0.54/1.15

Desire [25] 19.25 | 34.05 MATF [64] 0.81/1.52 | 0.67/1.37 | 0.60/1.26 | 0.34/0.68 | 0.42/0.84 | 0.57/1.13

SoPhie [50] 16.27 | 29.38 CGNS [26] 0.62/1.40 | 0.70/0.93 | 0.48/1.22 | 0.327/0.59 | 0.35/0.71 | 0.49/0.97

CF-VAE [3] 12.60 | 22.30 PIF [30] 0.73/1.65 | 0.30/0.59 | 0.60/1.27 | 0.38/0.81 | 0.31/0.68 | 0.46/1.00

PATIRL [1] 1258 [ 22.07 STSGN [62] 0.75/1.63 | 0.63/1.01 | 0.48/1.08 | 0.30/0.65 | 0.26/0.57 | 0.48/0.99

i GAT [21] 0.68/1.29 | 0.68/1.40 | 0.57/1.29 | 0.297/0.60 | 0.37/0.75 | 0.52/1.07

i;anéAug [igl 1909267 ig;; Social-BiGAT [22] || 0.697/1.29 | 0.49/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.48/1.00

Net [32] . ' Social-STGCNN [24] || 0.64/1.11 | 0.49/0.85 | 0.4470.79 | 0.34/0.53 | 0.30/048 | 0.44/0.75

Ours | 8.87 | 15.61 PECNet [32] 0.54/0.87 | 0.18/0.24 | 0.35/0.60 | 0.227/0.39 | 0.17/0.30 | 0.29/0.48

Table 1. ADE / FDE metrics on Stanford Drone for LB-EBM Ours || 0.30/0.52 | 0.13/0.20 | 0.27/0.52 | 0.20/0.37 | 0.15/0.29 | 0.21/0.38
compared to baselines are shown. All models use 8 frames as Table 2. ADE / FDE metrics on ETH-UCY for the proposed LB-EBM and baselines are shown. The models with * mark are non-probabilistic.
history and predict the next 12 frames. The lower the better. All models use 8 frames as history and predict the next 12 frames. Our model achieves the best average error on both ADE and FDE metrics.

The lower the better.

[1] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory Prediction with Latent Belief Energy-Based Model. CVPR, 2021
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Semi-Supervised Learning

x: observed example. y: one-hot category (symbol). z: dense latent vector

Po(y, 2, %) = paly; 2)ps(z|2)

1
* The prior model is an energy-based model Pq (y, Z) = eXp((y, F, (Z)))PO(Z)

Z(a)

* pp(x|z): top-down generation model

*  pa(¥|2): soft-max classifier Pq(y|2) x exp({y, Fo(2))) = exp(Fé}’) (2))

Semi-supervised log-likelihood

L(0) = logps(z) + A > logpe(ylz)

all labeled

Jianwen Xie, Ying Nian Wu ICCV 2021 Tutorial on Theory and Application of Energy-Based Generative Models



Semi-Supervised Learning

AGNews-Unigram

Method 200 Labels
giOVe Eg};) gg-g i é% Method 1000 Labels 4000 Labels
ove . .
VAMPIRE 81.9+ 0.5 VAE M1-+M2 64.0 -
0 84.5 + 0.3 AAE 82.3 -
urs : : JEM 66.0 -
FlowGMM 82.4 78.2
Accuracy on text dataset Ours 920 786
Hepmass  Miniboone Protein TripleGAN 94.2 83.0
Method 20 Labels 20 Labels 100 Labels EaiidGﬁl\lI gi -2 gg-g
-iviode . .
RBF Label Spreading 84.9 79.3 -
TEM ' g Lok VAT 94.3 85.8
FlowGMM 885+02 805407 -
Ours 89.1+0.1 812+03 231403 Accuracy on SVHN and CIFAR-10
TI-Model 879+02 80.8+0.01 -
VAT - - 17.1

Accuracy on tabular datasets from the UCI repository.

[1] Bo Pang, Erik Nijkamp, Jiali Cui, Tian Han, and Ying Nian Wu. Semi-supervised learning by latent space energy-based model of symbol-vector coupling. ICBINB Workshop at NeurIPS 2020
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Controlled Text Generation

. Y
Generative Model
| y 2
pQ(yazax) zpa(ya Z)pl@(ZCIZ) 4 pa(y )
Symbol-Vector Clioupling Prior qu(2|37) C‘ pg ($|Z)
Pa(y,2) = -—exp({y, fa(2)))Po(2) L

Learning with Information Bottleneck
Marginal Prior of the Continuous Vector

1 L(0,¢) = Dxw(Qg¢(z, 2)[| Po(z, 2)) — AL(z,y)
Pa(2) = 7 exp(Fn(2))po(2) =~ H(@) ~EQ,(s,2) Ufrgpﬂ (2[2)]
(87 reconstruction
Fo(z) =log ) _exp({y, fa(2))) + Dk, (06(2)[pa(2))
Infer Symbol froym Vector +I(z ZM_ICT;E )
pOl (y|z) X eXp(<y7 fa(z)>) kinfonnati():bottleneckj

[1] Bo Pang and Ying Nian Wu. Latent space energy-based model of symbol-vector coupling for text generation and classification. ICML 2021.
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Controlled Text Generation

Discover Action and Emotion Labels in Daily Dialogue
Sample Actions and Corresponding Utterances

Model MI" BLEUT  Action” Emotion"

DI-VAE 1.20 3.05 0.18 0.09 Action Inform-weather

semi-VAE 0.03 4.06 0.02 0.08 Next week it will rain on Saturday in Los Angeles
semi-VAE +Z(z,y) 121 3.69 0.21 0.14 Utterance It will be between 20-30F in Alhambra on Friday.
GM-VAE 0.00 203 0.08 0.02 It won’t be overcast or cloudy at all this week in Carson
GM-VAE +Z(z, y) 1.41 2.96 0.19 0.09

DGM-VAE 0.53 7.63 0.11 0.09 N

DGM-VAE +Z(z,y) 132 7.39 0.23 0.16 Action Request-traffic/route

SVEBM 001 1116 0.03 0.01 Which one is the quickest, is there any traffic?
SVEBM-IB 242 10.04 0.59 0.56 Utterance  Is that route avoiding heavy traffic?

Is there an alternate route with no traffic?

Table 2. Results of interpretable language generation on DD. Mu
tual information (MI), BLEU and homogeneity with actions anc
emotions are shown.

[1] Bo Pang and Ying Nian Wu. Latent space energy-based model of symbol-vector coupling for text generation and classification. ICML 2021.
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Controlled Text Generation

Accuracy of Sentiment Control on Yelp Review Generated Positive and Negative Reviews
Model Overall”  Positive’  Negative' The staff is very friendly and the food is great.
The best breakfast burritos in the valley.
DGM-VAE +Z(z,y)  64.7% 95.3% 34.0% Positive ~ SoI just had a great experience at this hotel.

CGAN 76.8% 94.9% 58.6% It’s a great place to get the food and service.
SVEBM-IB 90.1% 95.1% 85.2%

I would definitely recommend this place for your customers.

I have never had such a bad experience.
The service was very poor.

Negative I wouldn’t be returning to this place.
Slowest service I've ever experienced.
The food isn’t worth the price.

[1] Bo Pang and Ying Nian Wu. Latent space energy-based model of symbol-vector coupling for text generation and classification. ICML 2021.
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Summary

Models and methods

(1) Data space EBM.

(2) Interaction with generator model.
(3) Latent space EBM.

Why is EBM useful?

(1) Density estimation and synthesis.

(2) Soft objective/cost/value or soft regularization/rules/constraints.
(3) Generative classifier, contrastive self-supervised learning.

(4) Regularize multi-layer top-down models (e.g., sparsity).
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