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Disclaimer: References are not comprehensive or complete. Please refer to our papers for more references. 



Jianwen Xie 4IJCAI 2022 Tutorial on Deep Energy-Based Learning

Part 1: Background

1. Background

• Knowledge Representation: Sets, Concepts and Models

• Pattern Theory

• FRAME (Filters, Random field, And Maximum Entropy) 

• Inhomogeneous FRAME Model

• Sparse FRAME Model

• Deep FRAME Model

• Deep Energy-Based Models – Generative ConvNet

2. Deep Energy-Based Models in Data Space

3. Deep Energy-Based Cooperative Learning

4. Deep Energy-Based Models in Latent Space
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Knowledge Representation: Sets, Concepts and Models

• An image is a collection of numbers
indicating the intensity values of the
pixels and is a high dimensional object.

• A population of images (e.g., images of
faces, cats) can be described by a
probability distribution.

• A probabilistic model is a probability
distribution parametrized by a set of
parameters, which can be learned from
the data.

• Probabilistic models enable supervised,
unsupervised, semi-supervised learning,
and model-based reinforcement learning.

How a human sees an image How a computer sees an image

Image Space
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Knowledge Representation: Sets, Concepts and Models

Left: the universe with galaxies, stars and nebulas. Right: a zoomed-in view.

Consider the space of all the image patches of a fixed size (e.g., 10 × 10 pixels).
We can treat each image as a point. We have a population of points in the image space.
We may consider an analogy between this population and our three-dimensional universe.

An image

A concept, e.g., cat 
(a set of cat images)

Image Space
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Knowledge Representation: Sets, Concepts and Models

Markov Random Fields, Gibbs distributions, Energy-based models, Descriptive model, Maximum 
entropy model, exponential family models

A concept Ω is a set or equivalence class of images I :

+ 𝜖 for statistical fluctuation

This set derives a statistical model:

H I is the minimum sufficient statistical summary of image I.

Concept Ω Set hc Model 𝜃
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Pattern Theory

Grenander’s General Pattern theory is a mathematical formalism to describe knowledge of the world as patterns.

In recent decades, Grenander contributed to computational statistics, image processing, pattern recognition, and artificial intelligence. 

In 1970, Ulf Grenander was a pioneer using statistical models for various visual patterns

[1] Ulf Grenander. A unified approach to pattern analysis. Advances in Computers, 10:175–216, 1970.

General Pattern Theory 

He coined the term pattern theory to distinguish from pattern recognition.
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Pattern Theory

The Brown University Pattern Theory Group was formed in 1972 by Ulf Grenander. 

Many mathematicians are currently working in this group, noteworthy among them being the Fields Medalist David Mumford.

Mumford advocated Grenander’s pattern theory for computer vison and pattern recognition.

[1] Mumford, David and Desolneux Agnes. Pattern theory: the stochastic analysis of real-world signal. CPC Press. 2010.

Pattern Theory for Vision
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Pattern Theory

• Patterns are represented by statistical generative models that are in the form of probability distributions.

• Such models can tell us what the patterns look like by sampling from the statistical models.

• The models can be learned from the observed training examples via an “analysis by synthesis” scheme.

• Pattern recognition can be accomplished by likelihood-based or Bayesian inference.

Principles in Pattern Theory
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FRAME (Filters, Random field, And Maximum Entropy) 

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. IJCV, 1998.

I denotes the image

𝑥: pixel, position; 𝐷: domain of 𝑥

𝐵𝑘,𝑥 is Gabor filter of type (scale/orientation) 𝑘 at position 𝑥

𝐈, 𝐵𝑘,𝑥 is filter response 

ℎ(): non-linear rectification

𝑞(𝐈): reference distribution (e.g., uniform or Gaussian noise)

Markov random field, Gibbs distribution 

Maximum entropy distribution

Exponential family model

One convolutional layer (given)Original image, Gabor filters, filtered images (taken from internet)



Jianwen Xie 12IJCAI 2022 Tutorial on Deep Energy-Based Learning

FRAME (Filters, Random field, and Maximum Entropy)

For each pair of texture images, the image on the left is the observed image, and the image on the
right is the image randomly sampled from the model.

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. IJCV, 1998.
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Inhomogeneous FRAME Model

Analysis by synthesis: (use Hamiltonian Monte Carlo to sample images)

The inhomogeneous  FRAME model [1] for object patterns

[1] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Inhomogeneous FRAME Models for Object Patterns. (CVPR) 2014

One convolutional layer (given), one fully connected layer (learned 𝜃𝑘,𝑥)

HMC synthesized examples
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Sparse FRAME Model

Analysis by synthesis

The Sparse FRAME model [1,2] is a sparsified inhomogeneous  FRAME. (Interpretable!)

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. Inducing Wavelets into Random Fields via Generative Boosting. Journal of Applied and Computational Harmonic Analysis (ACHA) 2015
[2] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Sparse FRAME Models for Natural Image Patterns. International Journal of Computer Vision (IJCV) 2014

is the set of wavelets selected from the dictionary.

synthesized examples 

Generative boosting [1] and Shared Sparse Coding [2] are two methods to sparsify the model. 

One convolutional layer (given), one sparsely connected layer (learned 𝜃𝑗)
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Deep FRAME Model

VGG convolutional layer (given), one fully connected layer (learned)    Synthesis by Langevin dynamics

[1] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. AAAI 2016
[2] Ying Nian Wu, Jianwen Xie, Yang Lu, Song-Chun Zhu. Sparse and Deep Generalizations of the FRAME Model. Annals of Mathematical Sciences and Applications (AMSA) 2018

{𝐹𝑘
(𝑙)
, 𝑘 = 1,… ,𝐾} is a bank of filters

at a certain convolutional layer 𝑙 of a
pre-learned ConvNet, e.g., VGG.
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Deep Energy-Based Models –Generative ConvNet

• Let 𝐈 be an image defined on image domain 𝐷, the Generative ConvNet is a probability distribution defined on 𝐷.

• 𝑓𝜃 𝐈 is parameterized by a ConvNet that maps the image to a scalar. 𝜃 contains all the parameters of the ConvNet.

where 𝑞(𝐈) is a reference distribution, e.g., uniform or Gaussian distribution

• 𝑍(𝜃) is the normalizing constant

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

𝑓𝜃(𝐈)𝑥

It is seen as a multi-layer generalization of the FRAME model.
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Part 2: Deep Energy-Based Models in Data Space

1. Background

2. Deep Energy-Based Models in Data Space

• Maximum Likelihood Estimation of Generative ConvNet

• Mode Seeking and Mode Shifting

• Adversarial Interpretations

• Short-run MCMC for EBM

• Multi-Grid Modeling and Sampling

• Multi-Stage Coarse-to-Fine Expanding and Sampling

• Spatial-Temporal Generative ConvNet: EBMs for Videos

• Generative VoxelNet: EBMs for 3D Voxels

• Generative PointNet: EBMs for Unordered Point Clouds

• Energy-Based Continuous Inverse Optimal Control

3. Deep Energy-Based Cooperative Learning

4. Deep Energy-Based Models in Latent Space 
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Maximum Likelihood Estimation of Generative ConvNet

• Observed data

• Objective function of MLE learning is  

where the term                       can be rewritten as

• Model: 

• The gradient of the log-likelihood is

Derivation of gradient of the log-likelihood:
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Maximum Likelihood Estimation of Generative ConvNet

The expectation is analytically intractable and has to be approximated by Markov chain Monte Carlo (MCMC), 

such as Langevin dynamics or Hamiltonian Monte Carlo (HMC).

e.g., 𝑥 is a 100x100 grey-scale image

Each pixel ~ [0, 255].

Image space is 256 10,000 !

Intractable!!

Approximated by MCMC

Given a set of observed images

Gradient of MLE learning

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Maximum Likelihood Estimation of Generative ConvNet

Gradient ascent Brownian motion

For high dimensional data 𝑥, sampling from requires MCMC, such as Langevin dynamics

As ∆𝑡 → 0 and 𝑡 → ∞, the distribution of 𝑥𝑡 converges to 𝑝𝜃(𝑥).
∆𝒕 corresponds to step size in implementation.

Different implementations of the synthesis step: 

(i) Persistent chain: runs a finite-step MCMC from the synthesized examples generated from the previous epoch. 

(ii) Contrastive divergence: runs a finite-step MCMC from the observed examples. 

(iii) Non-persistent short-run MCMC: runs a finite-step MCMC from Gaussian white noise.

Gradient-Based MCMC and Langevin Dynamics
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Maximum Likelihood Estimation of Generative ConvNet

For t =1 to N

End

synthesis step:

analysis step:

Input: training images

Output: model parameters 𝜃

observed statistics synthesized statistics

Alternating back-propagations                       and∇𝜃𝑓𝜃(𝑥) ∇𝑥𝑓𝜃(𝑥)

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

Analysis by Synthesis
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Mode Seeking and Mode Shifting

Mode seeking and mode shifting

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Adversarial Interpretation

where                           are the synthesized images generated by the Langevin dynamics

• Define a value function  

• The learning and sampling steps play a minimax game:

• The update of      is based on𝜃

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Short-Run MCMC for EBM

Model (Representation): A short-run MCMC: Let 𝑀𝜃 be the transition

kernel of 𝐾 steps of MCMC toward 𝑝𝜃(𝑥).

For a fixed initial probability 𝑝0, the resulting

marginal distribution of sample 𝑥 after

running 𝐾 steps of MCMC starting from 𝑝0 is

denoted by

Synthesis by short-run MCMC

MCMC (Generation):

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019

We can write 𝑥 = 𝑀𝜃(z), where we fix 𝑒 = (𝑒𝑡), 
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Short-Run MCMC for EBM

Model distribution (Representation):

Short-run MCMC distribution (Generation):

Training 𝜃 with short-run MCMC is no longer a maximum likelihood estimator (MLE) but a moment matching 

estimator (MME) that solves the following estimating equation:

which is a perturbation of the maximum likelihood estimating equation.
Not 𝑝𝜃(𝑥) !

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019

• The blue curve illustrates the model distributions

corresponding to different values of parameter.

• The black curve illustrates all the distributions that

match 𝑝data (black dot) in terms of 𝐸[ℎ(𝑥)]

Consider a simple model where we only learn top layer weight parameters:
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Short-Run MCMC for EBM

Interpolation by short-run MCMC resembling a generator or flow model: The transition depicts the sequence 𝑀𝜃 𝑧𝜌 with

interpolated noise 𝑧𝜌 = 𝜌𝑧1 + 1 − 𝜌2 𝑧2 where 𝜌 ∈ [0,1] on CelebA (64×64). Left: 𝑀𝜃 𝑧1 . Right: 𝑀𝜃 𝑧2 .

Reconstruction by short-run MCMC resembling a generator or flow model: min
𝑧

𝑥 −𝑀𝜃(𝑧)
2. The transition depicts 𝑀𝜃 𝑧𝑡 over

time 𝑡 from random initialization 𝑡 = 0 to reconstruction 𝑡 = 200 on CelebA (64×64). Left: Random initialization. Right: Observed
examples.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019

Short-Run MCMC as a generator model
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Multi-Grid Modeling and Sampling

• Learning models at multiple resolutions (grids)
• Initialize MCMC sampling of higher resolution model from images sampled from lower resolution model
• The lowest resolution is 1x1. The model is histogram

[1] Ruiqi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Multi-Grid Modeling and Sampling

Inpainting

Feature learning: EBM as a generative classifier

Image generation

[1] Ruiqi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Multi-Grid Modeling and Sampling

Random Image Samples. Each row demonstrates a single training example
and multiple synthesis results of various aspect ratios.

Influence of different
numbers of scales

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Multi-Stage Coarse-to-Fine Expanding and Sampling 

• Training: incrementally grow the EBM from a low resolution (coarse model) to a high resolution (fine model) 

by gradually adding new layers to the energy function. 

• Testing: keep the EBM at the highest resolution for image generation using the short-run MCMC sampling.

𝑓(𝑥)𝑓(𝑥)

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.
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Multi-Stage Coarse-to-Fine Expanding and Sampling 

Generated examples on CelebA-HQ at 512 ×512 resolutionMCMC generative sequences on CelebA (50 Langevin steps)

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.
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Spatial-Temporal Generative ConvNet: EBM for Videos

Energy-based Spatial-Temporal Generative ConvNets: 

The spatial-temporal generative ConvNet is an energy-based model defined on the image sequence (video) , i.e.,

𝐈 = 𝐈 𝑥, 𝑡 , 𝑥 ∈ 𝐷, 𝑡 ∈ 𝑇 ,

where 𝑓 𝐈; 𝜃 is a bottom-up spatial-temporal ConvNet structure that maps the video to a scalar. 𝑞 is the

Gaussian white noise model

MLE update formula

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Spatial-Temporal Generative ConvNet: EBM for Videos

𝑓 𝐈; 𝜃𝐈

Generating dynamic textures with both spatial and temporal stationarity

spatial-temporal filters are convolutional in both spatial and temporal domains.

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Generating dynamic textures with only temporal stationarity

𝑓 𝐈; 𝜃𝐈

The 2nd layer is a spatially fully connected layer

observed synthesizedobserved

observed observed

synthesized

synthesized synthesized
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Generative VoxelNet: EBM for 3D Voxels

Energy-based Generative VoxelNet: 

3D deep convolutional energy-based model defined on the volumetric data 𝑥: 

where 𝑓 𝑥; 𝜃 is a bottom-up 3D ConvNet structure, and 𝑞(𝑥) is the Gaussian 

reference distribution.  The MLE iterates:

Sampling:

Learning:

[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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Generative VoxelNet: EBM for 3D Voxels

Inception Score

Each row displays one experiment, where the first three 3D objects are observed, column 4-9 
are synthesized, the last 4 are the nearest neighbors retrieved from the training set.

[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

3D Shape Generation
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Generative PointNet: EBM for Unordered Point Clouds
Energy-Based Generative PointNet:

where 𝑋 = {𝑥𝑘 , 𝑘 = 1, . . . , 𝑀} is a point cloud that contains 𝑀 unordered points, and 𝑍(𝜃) = ∫ exp𝑓𝜃(𝑋) 𝑝0(𝑋)

is the intractable normalizing constant. 𝑝0(𝑋) is reference gaussian distribution. 𝑓𝜃(𝑋) is a scoring function that

maps 𝑋 to a score and is parameterized by a bottom-up input-permutation-invariant neural network.

𝑓𝜃 𝑥1, … , 𝑥𝑀 = 𝑔 ℎ 𝑥1 , … , ℎ 𝑥𝑚

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021

ℎ is parameterized by a multi-

layer perceptron network and

𝑔 is a symmetric function,

which is an average pooling

function followed by a multi-

layer perceptron network.



Jianwen Xie 39IJCAI 2022 Tutorial on Deep Energy-Based Learning

Generative PointNet: EBM for Unordered Point Clouds

(a) 3D point cloud synthesis by short-run MCMC sampling

Chair

Toilet

Bathtub

Table

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021

Point Cloud Generation

Ground 
Truth

Generative 
PointNet

PointFlow

Point Cloud Reconstruction

Toilet

Chair

(c) Linear Interpolation on latent space

Point Cloud Interpolation

(b) Reconstruction by short-run MCMC generator
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Energy-Based Continuous Inverse Optimal Control

𝑝𝜃(𝑥) =
1

𝑍𝜃
exp[𝑓𝜃(𝑥)]

Energy-Based Model                                             Inverse Optimal Control

• Use cost function as the energy function in EBM probability distribution of trajectories;

• Perform conditional sampling as optimal control;

• Take advantage of known dynamic function and do back-propagation through time;

• Define joint distribution for multi-agent trajectory predictions.
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Energy-Based Continuous Inverse Optimal Control

• Optimal Control:  finite horizon control problem for discrete time 𝑡 ∈ {1,… , 𝑇}.

1. states 𝐱 = (𝑥𝑡, 𝑡 = 1,… , 𝑇)

2. control 𝐮 = (𝑢𝑡, 𝑡 = 1,… , 𝑇)

3. The dynamics is deterministic, 𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑢𝑡), where 𝑓 is given.

4. The trajectory is (𝐱, 𝐮) = (𝑥𝑡, 𝑢𝑡, 𝑡 = 1,… , 𝑇).

5. The environment condition is 𝑒. 

6. The recent history ℎ = (𝑥𝑡, 𝑢𝑡, 𝑡 = −𝑘,… , 0)

7. The cost function is 𝐶𝜃(𝐱, 𝐮, 𝑒, ℎ) where θ are parameters that define the cost function

• The problem of inverse optimal control is to learn 𝜃 from expert demonstrations

𝐷 = {(𝐱𝑖 , 𝐮𝑖 , 𝑒𝑖 , ℎ𝑖), 𝑖 = 1,… , 𝑛}.

{longitude, latitude, speed, heading angle, acceleration, steering angle}

{change of acceleration, change of steering angle}

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

Energy-Based Model for Inverse Optimal Control:

where                                                                         is the normalizing constant.

• 𝐱 is determined by 𝐮 according to the deterministic dynamics.

• The cost function 𝐶𝜃 𝐱, 𝐮, 𝑒, ℎ serves as the energy function.

• For expert demonstrations 𝐷, 𝐮𝑖 are assumed to be random samples from 𝑝𝜃 𝐮 𝑒, ℎ , so that 𝐮𝑖 tends to 

have low cost 𝐶𝜃 𝐱, 𝐮, 𝑒, ℎ . 

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control
Parameters 𝜃 can be learned via MLE from expert demonstrations 𝐷 = {(𝐱𝑖 , 𝐮𝑖 , 𝑒𝑖 , ℎ𝑖), 𝑖 = 1,… , 𝑛}. 

The loglikelihood 

The gradient

෤𝐱𝑖 , ෥𝐮𝑖 can be either sampled through Langevin dynamics or predicted through optimization method (that is, seek

the minimum cost). During sampling, the trajectory will be roll-out every step by dynamic function and perform back-

propagation through time.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

■ Ground Truth;   ■ EBM;   ■ GAIL;   ■ Other Vehicle;   ■ Lane.

Dataset:  NGSIM-US101

• Collected from camera on US101 highway.

• 10 frame as history and 40 frames to predict. (0.1s / frame)

• 831 total scenes with 96,512 5-second vehicle trajectories.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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References of Part 2

❑ Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

❑ Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

❑ Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based
model. NeurIPS, 2019

❑ Ruiqi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid
Modeling and Sampling. CVPR 2018.

❑ Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal
Learning. CVPR 2021

❑ Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.

❑ Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017.

❑ Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis
and Analysis. CVPR 2018

❑ Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for
3D Shape Synthesis and Analysis. TPAMI 2020

❑ Jianwen Xie*, Yifei Xu*, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point
Sets for 3D Generation, Reconstruction and Classification. CVPR 2021

❑ Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE
Transactions on Neural Networks and Learning Systems (TNNLS) 2022
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Part 3: Deep Energy-Based Cooperative Learning

1. Background

2. Deep Energy-Based Models in Data Space

3. Deep Energy-Based Cooperative Learning

• Generator Model as a Deep Latent Variable Model

• Maximum Likelihood Learning of Generator Model

• Two Generative Models: EBM vs. LVM 

• Cooperative Learning via MCMC Teaching

• Cooperative Conditional Learning

• Cycle-Consistent Cooperative Network

• Cooperative Learning via Variational MCMC Teaching

• Cooperative Learning of EBM and Normalizing Flow

4. Deep Energy-Based Models in Latent Space 



Jianwen Xie 47IJCAI 2022 Tutorial on Deep Energy-Based Learning

Generator Model as a Deep Latent Variable Model

• 𝑥: high-dimensional example; 

• 𝑧: low-dimensional latent vector (thought vector, code), follows a simple prior

• 𝑔: generation, decoder

• 𝜖: additive Gaussian white noise

• Manifold principle: high-dimensional data lie close to a low-dimensional manifold

• Embedding: linear interpolation and simple arithmetic 
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Generator Model as a Deep Latent Variable Model

Marginal

Posterior

Joint

Model

Conditional
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Maximum Likelihood Learning of Generator Model

Log-likelihood

Gradient

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Maximum Likelihood Learning of Generator Model

Langevin inference

Log-likelihood

Gradient

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Two Generative Models: EBM vs. LVM

Energy-based model

• Bottom-up network; scalar function, objective/cost/value, critic/teacher

• Easy to specify, hard to sample

• Strong approximation to data density

Generator model

• Top-down network; vector-valued function, sampler/policy, actor/student

• Direct ancestral sampling, implicit marginal density

• Manifold principle (dimension reduction), plus Gaussian white noise

• May not approximate data density as well as EBM

𝑥 ≈ 𝑔𝛼(𝑧)



Jianwen Xie 52IJCAI 2022 Tutorial on Deep Energy-Based Learning

Two Generative Models: EBM vs. LVM

Generator density: implicit integral

EBM density: explicit, unnormalized

EBM
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Cooperative Learning via MCMC Teaching

• Generator is student, EBM is teacher

• Generator generates initial draft, EBM refines it by Langevin

• EBM learns from data as usual

• Generator learns from EBM revision with known 𝒛: MCMC teaching

• Generator amortizes EBM’s MCMC and jumpstarts EBM’s MCMC

• EMB’s MCMC refinement serves as temporal difference teaching of generator

• Generator can provide unlimited number of examples for EBM, 

• Vs GAN: an extra refinement process guided by EBM

EBM

(1)

(2)

(3)
(5)

(4)

(6)

EBM   𝑝𝜃 Generator  𝑞𝛼

[1] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Cooperative learning algorithm
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Cooperative Learning via MCMC Teaching

[1] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

• Double line arrows indicate generation and reconstruction in the generator network

• Dashed line arrows indicate Langevin dynamics for revision and inference in the two models. 

• The diagram on the left illustrates a more rigorous method, where we initialize the Langevin inference of { ǁ𝑧𝑖} in Langevin 
inference from { Ƹ𝑧𝑖}, and then update 𝛼 based on { ǁ𝑧𝑖 , ෤𝑥𝑖}. 

• The diagram on the right shows how the two nets jumpstart each other’s MCMC without Langevin inference.

EBM   𝑝𝜃(𝑥) Generator  𝑞𝛼(𝑥)

Basic idea of MCMC teaching
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Cooperative Learning via MCMC Teaching

Learning EBM by modified contrastive divergence

Learning generator by MCMC teaching

[1] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Theoretical understanding



Jianwen Xie 56IJCAI 2022 Tutorial on Deep Energy-Based Learning

Cooperative Learning via MCMC Teaching

texture synthesis 

scene synthesis 

interpolation by the learned generator

image inpainting

original

corrupted

inpainted

[1] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Image synthesis 
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Cooperative Conditional Learning

Conditional Energy-Based Model (C-EBM)

Conditional Latent Variable Model (C-LVM)

Diagram of energy-based cooperative conditional learning

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Cooperative Conditional Learning
Label-to-Image generation

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
[2] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022

Image-to-Image generation

Binary Segmentation (Saliency Prediction)
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Cycle-Consistent Cooperative Network

• Cycle-Consistent Cooperative Network (CycleCoopNets) simultaneously learn and align two EBM-generator pairs

where each pair of models is trained via MCMC teaching to form a one-way translation. We align them by
enforcing mutual invertibility, i.e.,

• Two domians {𝑥𝑖; 𝑖 = 1,… , 𝑛𝑥} ∈ 𝒳 and 𝑦𝑖; 𝑖 = 1,… , 𝑛𝑦 ∈ 𝒴 without instance-level correspondence

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Collection style transfer from photo realistic images to artistic styles Season transfer

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cooperative Learning via Variational MCMC Teaching

• To retrieve the latent variable of { ෤𝑥𝑖} generated by EBM in the cooperative learning, a tractable

approximate inference network 𝜋𝛽 𝑧 𝑥 can be used to infer { ǁ𝑧𝑖} instead of using MCMC

inference. Then the learning of 𝜋𝛽 𝑧 𝑥 and 𝑞𝛼(𝑥|𝑧) forms a VAE that treats the refined

synthesized examples { ෤𝑥𝑖} as training examples.

• Variational MCMC teaching of the inference and generator networks is a minimization of

variational lower bound of the negative log likelihood

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021
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Cooperative Learning via Variational MCMC Teaching

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021
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Cooperative Learning via Variational MCMC Teaching

Image synthesis 

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021
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Cooperative Learning of EBM and Normalizing Flow

𝑞0 is a known Gaussian noise distribution. 𝑔𝛼 is an invertible transformations where the log determinants of

the Jacobians of the transformations can be explicitly obtained.

Under the change of variables, distribution of 𝑥 can be expressed as

𝑞𝛼 𝑥 = 𝑞0 𝑧
1

det(𝐽𝑎𝑐(𝑔))

𝑔𝛼 is composed of a sequence of transformations 𝑔𝛼 = 𝑔𝛼1 ∙ 𝑔𝛼2… 𝑔𝛼𝑚 , therefore, we have

[1] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. NIPS 2018

Normalizing flow
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Cooperative Learning of EBM and Normalizing Flow

The key idea of the flow-based model is to choose transformations 𝑔 whose Jacobian is a triangle 

matrix, so that the computation of determinant becomes

Maximum likelihood estimation of 𝑞

diag() takes the diagonal of the Jacobian matrix

In general, it is intractable !!

[1] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. NIPS 2018
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Cooperative Learning of EBM and Normalizing Flow

[1] Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li. A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model. ICLR 2022  
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Cooperative Learning of EBM and Normalizing Flow

Image synthesis 

Generated examples (32 ×32 pixels) by CoopFlow models trained from CIFAR-10, SVHN and Celeba datasets respectively.

[1] Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li. A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model. ICLR 2022  
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References of Part 3
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❑ Jianwen Xie, Yang Lu, Ruiqi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching.
AAAI 2018

❑ Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking
Solver for Conditional Learning. TPAMI 2021

❑ Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022

❑ Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating
MCMC Teaching for Unsupervised Cross-Domain Translation. AAAI 2021

❑ Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021

❑ Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li. A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-
Based Model. ICLR 2022
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Part 4: Deep Energy-Based Models in Latent Space

1. Background

2. Deep Energy-Based Models in Data Space

3. Deep Energy-Based Cooperative Learning

4. Deep Energy-Based Models in Latent Space 

• Latent Space Energy-Based Prior Model

• Learning by Maximum Likelihood

• Prior and Posterior Sampling

• Learning and Sampling Algorithm of Latent Space EBM

• Latent Space Energy-Based Model for Sequential Data

• Latent Space EBM for Trajectory Prediction

• Conditional Learning with Latent Space EBM 
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Latent Space Energy-Based Prior Model

𝑥: observed example (e.g., an image); 𝑧: latent vector.

• EBM 𝑝𝛼(𝑧) defined on latent space 𝑧, standing on a top-down generator. 

• Exponential tilting of 𝑝0(𝑧), 𝑝0 is non-informative isotropic Gaussian or uniform prior.

• Empirical Bayes: learning prior from data, latent space modeling. 

• Learning regularities and rules in latent space. 

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020
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Learning by Maximum Likelihood

Log-likelihood

Gradient for a training example

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

let
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Learning by Maximum Likelihood

• Learning EBM prior: matching prior and aggregated posterior

• Learning generator: reconstruction

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020
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Prior and Posterior Sampling

(1) Sampling from prior via Langevin dynamics

(2) Sampling from posterior via Langevin dynamics

Let



Jianwen Xie 74IJCAI 2022 Tutorial on Deep Energy-Based Learning

Learning and Sampling Algorithm of Latent Space EBM

by Langevin sampling from target distribution

by Langevin sampling from target

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020
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Learning and Sampling Algorithm Latent Space EBM

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Image Generation
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Latent Space Energy-Based Model for Sequential Data

• 𝑧 is an abstraction vector about the whole sequential data and controls the generation of sequential data at 

each time step.

• May be applied to text data or other time series data. 

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

𝑥: observed example (e.g., text); 𝑧: latent vector.

RNN/auto-regressive generation model for sequential data



Jianwen Xie 77IJCAI 2022 Tutorial on Deep Energy-Based Learning

Latent Space Energy-Based Model for Sequential Data

Forward Perplexity (FPPL), Reverse Perplexity (RPPL), and Negative Log-Likelihood (NLL) for the latent space
energy-based prior model and baselines on SNLI, PTB, and Yahoo datasets.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

Text Generation

• 𝑧 is a thought vector about the whole sentence and controls the generation of the sentence at each time step.

• Enables abstraction of a whole sentence. 
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Latent Space Energy-Based Model for Sequential Data

(a) Samples from ZINC dataset (b) Synthesized molecules

[1] Bo Pang, Tian Han, Ying Nian Wu. Learning Latent Space Energy-Based Prior Model for Molecule Generation. Workshop at NeurIPS, 2020

Molecule Generation

• Validity: the percentage of valid molecules among all the generated ones

• Novelty: the percentage of generated molecules not appearing in training set

• Uniqueness: the percentage of unique ones among all the generated molecules

Evaluations

(1) RNN/auto-regressive model for molecule SMILES sequence (2) EBM prior captures chemical rules implicitly
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Latent Space EBM for Trajectory Prediction

• 𝑧: latent thought/belief of whole trajectory (event)

• Prediction as inverse planning

• Energy as cost function, defined on whole trajectory

[1] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory Prediction with Latent Belief Energy-Based Model. CVPR, 2021
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EBM prior

Conditional Learning with Latent Space EBM 

𝐈: input image. 𝑧: latent vector. 𝑆: saliency map

• EBM defined on 𝑧, standing on a latent space of the transformer generator. 
• Exponential tilting of 𝑝0(𝑧), 𝑝0(𝑧) is the non-informative isotropic Gaussian distribution.
• Empirical Bayes: learning prior EBM from data

Residual noise

Transformer Generator

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurIPS, 2021

Conditional Learning for Saliency Prediction
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Conditional Learning with Latent Space EBM 

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurIPS, 2021

Latent EBM

baseline model 

ground truths 

Input images
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References of Part 4

❑ Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurIPS, 2020

❑ Bo Pang, Tian Han, Ying Nian Wu. Learning Latent Space Energy-Based Prior Model for Molecule Generation. Workshop at NeurIPS, 2020

❑ Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory Prediction with Latent Belief Energy-Based Model. CVPR, 2021

❑ Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency
Prediction. NeurIPS, 2021
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https://energy-based-models.github.io/paper.html

https://energy-based-models.github.io/paper.html

