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Jianwen Xie is a Staff Research Scientist at Baidu Research. He
received his Ph.D. degree in Statistics at University of California,
Los Angeles (UCLA), under the supervision of Prof. Ying Nian Wu
and Prof. Song-Chun Zhu in 2016. His primary research interest
lies in statistical modeling, computing and learning.
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Disclaimer: References are not comprehensive or complete. Please refer to our papers for more references.
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Knowledge Representation: Sets, Concepts and Models

Image Space . . .
g€ op * An image is a collection of numbers

indicating the intensity values of the

s ixels and is a high dimensional object.
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How a human sees an image How a computer sees an image *  Probabilistic models enable supervised,
unsupervised, semi-supervised learning,
and model-based reinforcement learning.
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Knowledge Representation: Sets, Concepts and Models

Image Space

Consider the space of all the image patches of a fixed size (e.g., 10 x 10 pixels).
We can treat each image as a point. We have a population of points in the image space.
We may consider an analogy between this population and our three-dimensional universe.

A concept, e.g., cat
(a set of cat images)

An image

Left: the universe with galaxies, stars and nebulas. Right: a zoomed-in view.
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Knowledge Representation: Sets, Concepts and Models

A concept () is a set or equivalence class of images I :

Y/ (hc) — {I : H(I) = hc} + € for statistical fluctuation

H(I) is the minimum sufficient statistical summary of image I.

This set derives a statistical model:

Markov Random Fields, Gibbs distributions, Energy-based models, Descriptive model, Maximum
entropy model, exponential family models

Concept ) <<= Set h, <==> Model 6
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Pattern Theory

General Pattern Theory

In 1970, Ulf Grenander was a pioneer using statistical models for various visual patterns

In recent decades, Grenander contributed to computational statistics, image processing, pattern recognition, and artificial intelligence.
He coined the term pattern theory to distinguish from pattern recognition.

Grenander’s General Pattern theory is a mathematical formalism to describe knowledge of the world as patterns.

UIf Grenander

) ¢ . ' .

crystal patterns face patterns Constellation patterns in the sky.

[1] UIf Grenander. A unified approach to pattern analysis. Advances in Computers, 10:175-216, 1970.
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Pattern Theory

Pattern Theory for Vision

The Brown University Pattern Theory Group was formed in 1972 by UIf Grenander.

Many mathematicians are currently working in this group, noteworthy among them being the Fields Medalist David Mumford.

Mumford advocated Grenander’s pattern theory for computer vison and pattern recognition.

David Mumford

[1] Mumford, David and Desolneux Agnes. Pattern theory: the stochastic analysis of real-world signal. CPC Press. 2010

Jianwen Xie
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Pattern Theory

Principles in Pattern Theory

Patterns are represented by statistical generative models that are in the form of probability distributions.

Such models can tell us what the patterns look like by sampling from the statistical models.

The models can be learned from the observed training examples via an “analysis by synthesis” scheme.

Pattern recognition can be accomplished by likelihood-based or Bayesian inference.
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FRAME (Filters, Random field, And Maximum Entropy)

1 k I denotes the image

Po (I) = TQ) exp Z Z Qkh((l, Bk,:n)) Q(I) x: pixel, position; D: domain of x
k=1zeD

By x is Gabor filter of type (scale/orientation) k at position x

(I, By x) is filter response
Input Image of 4
acircle

h(): non-linear rectification

q(I): reference distribution (e.g., uniform or Gaussian noise)

Markov random field, Gibbs distribution

Maximum entropy distribution

Exponential family model

A bankof 16 Gabor Filters

Theoutputcircle as seenwhen pass
through individual Gabor filter

Original image, Gabor filters, filtered images (taken from internet) One convolutional Iayer (given)
[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. 1JCV, 1998.
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FRAME (Filters, Random field, and Maximum Entropy)

For each pair of texture images, the image on the left is the observed image, and the image on the
right is the image randomly sampled from the model.

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. 1JCV, 1998.
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Inhomogeneous FRAME Model

The inhomogeneous FRAME model [1] for object patterns

po(I) = ZE exp Z > Ok2h (I Bra)) | (1)

k=1zeD

Analysis by synthesis: (use Hamiltonian Monte Carlo to sample images)

9(t+1) 9 Z h({I;, Brz)) — = Z h(az: Bi,z))

HMC synthesized examples

[1] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Inhomogeneous FRAME Models for Object Patterns. (CVPR) 2014
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Sparse FRAME Model

The Sparse FRAME model [1,2] is a sparsified inhomogeneous FRAME. (Interpretable!)

1

pg(I) - Z(@) S ZeJh(<I’BkJ13’J>) q(I)

B = (B =Br, 2,7 =1,..., m) is the set of wavelets selected from the dictionary.

One convolutional layer (given), one sparsely connected layer (learned 6;)

- . ;#\
71y RS
10

~ synthesized examples

1< RS
ngt—f—l) — ngt) + Mt E Zl h (<I,“ Bkj1$j>) s % Z h (<Ig,, Bkjamj >)

1=

Analysis by synthesis

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. Inducing Wavelets into Random Fields via Generative Boosting. Journal of Applied and Computational Harmonic Analysis (ACHA) 2015
[2] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Sparse FRAME Models for Natural Image Patterns. International Journal of Computer Vision (1JCV) 2014
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Deep FRAME Model

{Fk(l),k = 1,...,K} is abank of filters
at a certain convolutional layer [ of a
pre-learned ConvNet, e.g., VGG.

VGG convolutional layer (given), one fully connected layer (learned) Synthesis by Langevin dynamics

[1] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. AAAI 2016
[2] Ying Nian Wu, Jianwen Xie, Yang Lu, Song-Chun Zhu. Sparse and Deep Generalizations of the FRAME Model. Annals of Mathematical Sciences and Applications (AMSA) 2018
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Deep Energy-Based Models - Generative ConvNet

* LetIbe animage defined on image domain D, the Generative ConvNet is a probability distribution defined on D.

1
I = I I
pe(T) 7(0) =P (fo(I)) q(T)
1 i
where g(I) is a reference distribution, e.g., uniform or Gaussian distribution ¢(I) = b P (2—2 HI\2)
(2mo2) o

* Z(0) is the normalizing constant  Z(6) = /Iexp (fo(I)) q(I)dl

* fo(I) is parameterized by a ConvNet that maps the image to a scalar. 8 contains all the parameters of the ConvNet.

Training images Training images Training images

It is seen as a multi-layer generalization of the FRAME model.

Synthesized images Synthesized images

feature maps

input RGB image

2% layer

feature maps
« 1% layer

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Part 2: Deep Energy-Based Models in Data Space

1. Background 3. Deep Energy-Based Cooperative Learning
2. Deep Energy-Based Models in Data Space 4. Deep Energy-Based Models in Latent Space
. Maximum Likelihood Estimation of Generative ConvNet

. Mode Seeking and Mode Shifting

. Adversarial Interpretations

. Short-run MCMC for EBM

. Multi-Grid Modeling and Sampling

. Multi-Stage Coarse-to-Fine Expanding and Sampling

. Spatial-Temporal Generative ConvNet: EBMs for Videos
. Generative VoxelNet: EBMs for 3D Voxels

. Generative PointNet: EBMs for Unordered Point Clouds

. Energy-Based Continuous Inverse Optimal Control

Jianwen Xie 1JCAI 2022 Tutorial on Deep Energy-Based Learning



Maximum Likelihood Estimation of Generative ConvNet

1
Z(0)

2(6) = ] exp(fo(x))dz

exp(fo(z))

Model:| po(z) =

Observed data {3:1, saes LEn} ~ pdata(a:)

Objective function of MLE learning is
1 mn
L(0) = - Z}logpo(wi)
[ —

The gradient of the log-likelihood is

L) = - > Vao(@) = Epy(o) Vo o(@)

Jianwen Xie

Derivation of gradient of the log-likelihood:
Vo logpg(x) = Vg fe(x) — Volog Z(8)

where the term Vg log Z(f)can be rewritten as

YV, log Z(6) = %vgzw)

_ %Ve / exp(f3(2))da

1

- m/exp(fe(&?))vefe(m)dw

:/Z(le) exp(fo(x)) Ve fo(x)dx

= /pe(m)vofe(i’?)dm
= Ep,(2)[Vofo()]
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Maximum Likelihood Estimation of Generative ConvNet

Given a set of observed images {3}1, ceey LEn} ~ pdata(il?)

Gradient of MLE learning -
- .., x is a 100x100 grey-scale image
L'()=E Vofo(@)] — By, ) [Vofo(z “E A
(0) = Epgaa(2) [ Vo So(z). ~J_o@(:c)[ 0.fo(z)] ot el ~ (0,551,
1 o 1 < Image space is 256 10:000 |
- E Vofo(z:) - = E Vo fo(Z:) 5o '
n i1 n i1 Intractable!!

Approximated by MCMC {531, s &8 53?'5,} ~ Do (CL’)

The expectation is analytically intractable and has to be approximated by Markov chain Monte Carlo (MCMC),

such as Langevin dynamics or Hamiltonian Monte Carlo (HMC).

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Maximum Likelihood Estimation of Generative ConvNet

Gradient-Based MCMC and Langevin Dynamics

1
For high dimensional data x, sampling from pg(z) = 70 exp( fo(x)) requires MCMC, such as Langevin dynamics
At
T+ At = Ty + 7me9(33t) + vV Atey er ~ N(0,1)
Gradient ascent Brownian motion

As At — 0 and t — oo, the distribution of x; converges to pg (x).
At corresponds to step size in implementation.

Different implementations of the synthesis step:
(i) Persistent chain: runs a finite-step MCMC from the synthesized examples generated from the previous epoch.
(ii) Contrastive divergence: runs a finite-step MCMC from the observed examples.

(iii) Non-persistent short-run MCMC: runs a finite-step MCMC from Gaussian white noise.
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Maximum Likelihood Estimation of Generative ConvNet

Analysis by Synthesis
Input: training images {Z1, .., Zn} ~ Pdata(T)
Output: model parameters @

Fort=1to N

observed statistics synthesized statistics

synthesis step: {5:1, yaey i'ﬁ} ~ Do, (3’3) / /

analysis step: 9t+1 = 9,5 + Mt % ; Vefa(il?z') - % ; Vefe(fi)

End

Alternating back-propagations Vg fg (x) and V, fy(x)

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Mode Seeking and Mode Shifting

Mode seeking and mode shifting

—— true model x observed data
learned model o synthesized data
fe4 f4 /)<\
200 e Py 2000000000 Soco
T LRCRCRCC N : >x
(1) mode searching x (3) mode chasing
Jfeor ™ /\
<
200000¢ Q0000 > x 2000000 > x
(2) mode shifting (4) mode matching

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Adversarial Interpretation

* The update of 6 is based on

) 1< 1< )
0) ~ - Zvﬁ'fﬁ'(mi) -z Zvﬁyﬁg(mZ
=1 1=

where {Z1, ..., Z7; } are the synthesized images generated by the Langevin dynamics

* Define avalue function V ({Z;},0) = ng ;) — = Z fo(Z:)

« The learning and sampling steps play a minimax game: min max V({LE,,} 9)

{Z:} 0

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Short-Run MCMC for EBM

1

Model (Representation): pg (m) = Z(@) eXp(fg (gc)) A short-run MCMC: Let My be the transition
A kernel of K steps of MCMC toward pg(x).
MCMC (Generation): iy, Ay =y + 5 Vafo(zt) + VAter  For a fixed initial probability py, the resulting

marginal distribution of sample x after
VeL(0) = Epd“a(“"")[vefg ()] - Fjp"("’)[vefe ()] running K steps of MCMC starting from p,, is

~ % > Vofo(z:) - % Z Vo fo(Z:) denoted by
= = qo(z) = Mopo(x) = /po(z)Mg(x|z)dz

Z~Po
x = Mpy(z,e)
Synthe5|s by short-run MCMC We can write x = My(z), where we fix e = (e),

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

1
Model distribution (Representation): po(z) = Z(6) exp(fo(x))

Short-run MCMC distribution (Generation): qa(g;) — Mgpo(gj) — /po(z)M9($|z)dz

Training 8 with short-run MCMC is no longer a maximum likelihood estimator (MLE) but a moment matching

estimator (MME) that solves the following estimating equation:

Epaua [VoSo(z)] = Eq, [Vofo(z)]
|

which is a perturbation of the maximum likelihood estimating equation.

» Not pg(x) !

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

Consider a simple model where we only learn top layer weight parameters:

* The blue curve illustrates the model distributions

corresponding to different values of parameter.

© = {po(z) = exp((0, h(x)))/Z(0), 0}

e The black curve illustrates all the distributions that

match pgata (black dot) in terms of E[h(x)]

Q= {p: Ep[h(z)] = Epg,.. [M(2)]}

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

Short-Run MCMC as a generator model

Interpolation by short-run MCMC resembling a generator or flow model: The transition depicts the sequence Mg(Zp) with
interpolated noise z, = pz; + /1 — p? z, where p € [0,1] on CelebA (64X64). Left: My(z,) . Right: Mg(z,).

R R R TR R
ssass@ b & & 8

L

Reconstruction by short-run MCMC resembling a generator or flow model: min||x — My(2)||2. The transition depicts My (z;) over
zZ

time t from random initialization ¢ = 0 to reconstruction t = 200 on CelebA (64%x64). Left: Random initialization. Right: Observed
examples.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Multi-Grid Modeling and Sampling

Y, Y,
a]
Ix1 4x4
16x16 x4

Stagel: generate Y, from Y,

T
Stage2: generate Y; from Y,

T
Stage3: generate Y; from Y,

* Learning models at multiple resolutions (grids)
* Initialize MCMC sampling of higher resolution model from images sampled from lower resolution model
* The lowest resolution is 1x1. The model is histogram

[1] Ruigi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Multi-Grid Modeling and Sampling

Image generation Inpainting

SOIESICIS

"_'# .9 »'»4" -l
E >

N R E

"al e

= '» =

BN E TR

Feature learning: EBM as a generative classifier

Test error rate with # of labeled images | 1,000 2,000 4,000

DGN 36.02 - -

Virtual adversarial 24.63 - -

Auxiliary deep generative model 22.86 - -
Supervised CNN with the same structure | 39.04 22.26 15.24
Multi-grid CD 4+ CNN classifier 19.73 15.86 12.71

[1] Ruigi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Multi-Grid Modeling and Sampling

i B

VSXnthesis Results | scale
\Y 2 o Julas.com ~ ‘% ; : L -

Random Image Samples. Each row demonstrates a single training example Influence of different
and multiple synthesis results of various aspect ratios. numbers of scales

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Multi-Stage Coarse-to-Fine Expanding and Sampling

1 Approach | Models | FID
VAE | VAE (Kingma & Welling, 2014) | 78.41
pe x eXp 9 aj Autoregressive PixelCNN (Van den Oord et al., 2016) 65.93
2 : (9 ) g PixellQN (Ostrovski et al., 2018) 49.46
WGAN-GP (Gulrajani et al., 2017) 36.40
GAN SN-GAN (Miyato et al., 2018) 21.70
StyleGAN2-ADA (K tal., 2020 2.92
Mult istagp Learn Eng Smooth Sumpling f(x) e ( araseta )
’ T o f() i o Glow (Kingma & Dhariwal, 2018) 45.99
y Flow Residual Flow (Chen et al., 2019a) 46.37
' Contrastive Flow (Gao et al., 2020) 37.30
MDSM (Li et al., 2020) 30.93
° ) Score-based NCSN (Song & Ermon, 2019) 25.32
S s NCK-SVGD (Chang et al., 2020) 21.95
g §, Short-run EBM (Nijkamp et al., 2019) 44.50
Multi-grid (Gao et al., 2018) 40.01
EBM EBM (ensemble) (Du & Mordatch, 2019) | 38.20
CoopNets (Xie et al., 2018b) 33.61
EBM+VAE (Xie et al., 2021d) 39.01
CF-EBM 16.71

* Training: incrementally grow the EBM from a low resolution (coarse model) to a high resolution (fine model)
by gradually adding new layers to the energy function.

* Testing: keep the EBM at the highest resolution for image generation using the short-run MCMC sampling.

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.

Jianwen Xie 1JCAI 2022 Tutorial on Deep Energy-Based Learning



Multi-Stage Coarse-to-Fine Expanding and Sampling

- o

p,»“ " A .

». - . [ “3

= - = < )
4] 3 = ] L 4 1 = - . : ‘
2 4 ; & 3 ) { -\ I iy

> > ' (5}

MCMC generative sequences on CelebA (50 Langevin steps) Generated examples on CelebA-HQ at 512 X 512 resolution

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.
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Spatial-Temporal Generative ConvNet: EBM for Videos

Energy-based Spatial-Temporal Generative ConvNets:

The spatial-temporal generative ConvNet is an energy-based model defined on the image sequence (video), i.e.,

I ={(x,t),x € D,t € T), 1
po(1) = 757 exp(fo(D)a(D)

where f(I;60) is a bottom-up spatial-temporal ConvNet structure that maps the video to a scalar. g is the

Gaussian white noise model ] .
. g2
o0 = e o - 55al?]

MLE update formula 6441 =0 + 1

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

1JCAI 2022 Tutorial on Deep Energy-Based Learning
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Spatial-Temporal Generative ConvNet: EBM for Videos

Generating dynamic textures with both spatial and temporal stationarity
observed synthesized observed synthesized

Generating dynamic textures with only temporal stationarity
observed synthesized observed synthesized

[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Generative VoxelNet: EBM for 3D Voxels

Energy output

Energy-based Generative VoxelNet:
0 f(v:e)

3D deep convolutional energy-based model defined on the volumetric data x:

pola) = 055 explfo(o) A

A

where f(x; 8) is a bottom-up 3D ConvNet structure, and g(x) is the Gaussian

reference distribution. The MLE iterates:

At
Sampling: Ti+At = Tt + 7wa9 (xt) + vV Atey
| 1 1o )
Learning: Ori1 =0 +me | > Vofo(w:) - = > Vofo(:)
=1 =1 3D voxel input ¥

3D input

[1] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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Generative VoxelNet: EBM for 3D Voxels

3D Shape Generation
obsl1 obs2 obs3 synl syn2 gnj synd synS syn6 nnl nn2 nn3 i
.“ ‘Q“‘ ““ 3D ShapeNets [10] 4.1261+0.193
3D GAN [17] 8.658+0.450
3D VAE [79] 11.015+0.420

chair

bed

Model [ Inception score |

P ® e Hhe * SDWINN (3 SSI00 190
b Primitive GAN [34] 11.520+0.330
generative VoxelNet (ours) 11.772+0.418

dresser

QeGd
L R 4

toilet

2
I UL LLE
tetReogtet

Each row displays one experiment, where the first three 3D objects are observed, column 4-9
are synthesized, the last 4 are the nearest neighbors retrieved from the training set.

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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Generative PointNet: EBM for Unordered Point Clouds

Energy-Based Generative PointNet:

where X = {x,k = 1,..., M} is a point cloud that contains M unordered points, and Z(0) = | exp f3(X) po(X)

exp fo(X)po(X)

is the intractable normalizing constant. py(X) is reference gaussian distribution. fg(X) is a scoring function that

maps X to a score and is parameterized by a bottom-up input-permutation-invariant neural network.

mlip (64, 128, 256, 512, 1024) mlp (512, 256, 64) h |S paramete”zed by a multl_
64 128 256 512 1024
% ) o) 3 ) = w24 layer perceptron network and
— —] — —| —> 256
£ — | —> —> —> > - £ [ . . .
5 |e| 3 8 2 | 8 g g g is a symmetric function,
; X : X i T H b H X i '; . —_— | | —pl:l_,.i
BIT| stwea | | shered | = | shered || shared | n—_— 5 : £ which is an average pooling
: i H £
e T L e N e W B W L —— function followed by a multi-

fo({x1, ..., xy D) = g({h(xy), ..., R(x,) ) layer perceptron network.

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021
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Point Cloud Generation Point Cloud Reconstruction

Chair
Ground
Toilet Truth
Generative
Bathtub PointNet
PointFlow
Table

Toilet

Point Cloud Interpolation

Chair

(c) Linear Interpolation on latent space

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021



Energy-Based Continuous Inverse Optimal Control

1 A
Po(¥) = z-explfo] -

~10

I

-15

Energy-Based Model Inverse Optimal Control
i Use cost function as the energy function in EBM probability distribution of trajectories;
* Perform conditional sampling as optimal control;
* Take advantage of known dynamic function and do back-propagation through time;
* Define joint distribution for multi-agent trajectory predictions.
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Energy-Based Continuous Inverse Optimal Control

* Optimal Control: finite horizon control problem for discrete time t € {1, ..., T}.

states X = (xt, t=1,.., T) {longitude, latitude, speed, heading angle, acceleration, steering angle}

controlu = (u,t = 1,..,T) {change of acceleration, change of steering angle}

The dynamics is deterministic, x; = f(x;_1,u;), where f is given.

The environment condition is e.

1

2

3

4. Thetrajectoryis (x,u) = (x4, ugt = 1,...,7T).
5

6. Therecent history h = (x;, us, t = —k, ..., 0)

7

The cost function is Cg(X, u, e, h) where 0 are parameters that define the cost function

* The problem of inverse optimal control is to learn 8 from expert demonstrations

D = {(xi,ui, e, hi),i = 1, ...,n}.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

Energy-Based Model for Inverse Optimal Control:

1

minle k) =z )

exp [—Cy(x,u,e, h)]

where Zy(e,h) = /exp [—Cp(x,u,e,h)]du is the normalizing constant.

* Xxis determined by u according to the deterministic dynamics.
* The cost function Cy (X, u, e, h) serves as the energy function.

For expert demonstrations D, u; are assumed to be random samples from pgy (ule, h), so that u; tends to

have low cost Cy(Xx,u, e, h).

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

Parameters 6 can be learned via MLE from expert demonstrations D = {(x;,u;,e;, h;),i =1, ...,n}.

1 n
The loglikelihood  L(f) = - E log pg (u; | €, h;)
i=1

1 « 0 %)
The gradient L,(H) = " Z[Epg(uki,hi) (@Cﬂ (x,ua,e;, hz)) —%CB (x4, 14, €, hz)]
i=1

L'(6) = ) Z [QCB (Xi, 0, €4, h;) — %Ce (Xi,uueuh@)}

(X;,U;) can be either sampled through Langevin dynamics or predicted through optimization method (that is, seek

the minimum cost). During sampling, the trajectory will be roll-out every step by dynamic function and perform back-

propagation through time.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and

Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

Dataset: NGSIM-US101
* Collected from camera on US101 highway.
* 10 frame as history and 40 frames to predict. (0.1s / frame)

* 831 total scenes with 96,512 5-second vehicle trajectories.

100 100 100 100
75 75 75 75
L ]
5.0 . 50 . 5.0 . 5.0
25 25 . 25 25
. L]
o0 L] . 00 b 00 00
. L)
25 © 25 O 25 [ ] 25 . C
L]
-50 =50 -50 50
75 -15 75 75
-100 B : : . : : -100 : : : : : : -100 4 | : : ) : -100 1+ ; . . . : B :
—40 20 o 0 40 & 40 20 o 0 40 & -0 -1o o 10 20 0 -60 -40 -20 0 o 4@ & &

m Ground Truth; = EBM; m GAIL; = Other Vehicle; m Lane.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Part 3: Deep Energy-Based Cooperative Learning

1. Background

2. Deep Energy-Based Models in Data Space 4. Deep Energy-Based Models in Latent Space

3. Deep Energy-Based Cooperative Learning
. Generator Model as a Deep Latent Variable Model
. Maximum Likelihood Learning of Generator Model
. Two Generative Models: EBM vs. LVM

. Cooperative Learning via MCMC Teaching

. Cooperative Conditional Learning

. Cycle-Consistent Cooperative Network

. Cooperative Learning via Variational MCMC Teaching
. Cooperative Learning of EBM and Normalizing Flow
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Generator Model as a Deep Latent Variable Model

z~N(0,1)
x=gq,(2)+e€

x: high-dimensional example;

z: low-dimensional latent vector (thought vector, code), follows a simple prior

* g:generation, decoder

€: additive Gaussian white noise

Manifold principle: high-dimensional data lie close to a low-dimensional manifold

Embedding: linear interpolation and simple arithmetic

Jianwen Xie 1JCAI 2022 Tutorial on Deep Energy-Based Learning



Generator Model as a Deep Latent Variable Model

Model z N(Oal)
r = ga(z)+€

Conditional Qa(m|z) =N (ga (Z), 0’21)

Joint qa(a':, Z) a Q(z)qa(m|z)
1 1
108 4a(#,) = 55 |2 = ga (2)I” = ]I+ constant
Marginal Go(x) = /qa(a},z)dz
Posterior o (Z|$) = Q'oz(za "E)/Qa(w)
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Maximum Likelihood Learning of Generator Model

1 mn
Log-likelihood (o) = N Z log qo (;)
1=1

_ 1
Gradient Valogga(x) = Vaqal(x
(#) = 5 Vatalo)

)
__1 g, / 4o, 2)dz

o ()

1 f
= al@, 2)Valogga(x, 2)dz
() Ga(®, 2) g ga(®, 2)

= 9a(2, 2) o) x,z)dz
—f () Valog qa(x, z)d

= /qa(ZIH?)Va log go (2, 2)dz

e IE:qol(z|:c) [va log Q(m? Z)]

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Maximum Likelihood Learning of Generator Model

1 mn
Log-likelihood (o) = N Z log qo (;)
1=1

Gradient V1080 () = By (2)2) [V 108 a2, 2)]

e |

Langevin inference
1 |
Zeyar = 2 + %VZ 10g qo (2t|) + VAtey log ga(®,2) = =55 llz — 9o ()" — §||Z||2 + constant
1 1
V. logga(z|x) = = (2 — 9a(2)) Viga(2) — 2 Valogga(x,z) = = (2 — ga(2)) Vaga(2)

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Two Generative Models: EBM vs. LVM

Top-down mapping Bottom-up mapping
hidden vector 7 energy — fo(x)
4 T
example x =~ g, (z) example x
(a) Generator model (b) Energy-based model

Energy-based model

. Bottom-up network; scalar function, objective/cost/value, critic/teacher

. Easy to specify, hard to sample

. Strong approximation to data density

Generator model

. Top-down network; vector-valued function, sampler/policy, actor/student
. Direct ancestral sampling, implicit marginal density

. Manifold principle (dimension reduction), plus Gaussian white noise

. May not approximate data density as well as EBM
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Two Generative Models: EBM vs. LVM

D2 updating

EBM density: explicit, unnormalized D1 Lange\nn

e

Generator density: implicit integral G2 updating

- —l mferred latent factors !
s / 4(#)9a(wl2)dz T G Langern

( observed examples ]
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Cooperative Learning via MCMC Teaching

Cooperative learning algorithm

EBM pg Generator q,

e Generatoris student, EBM is teacher

*  Generator generates initial draft, EBM refines it by Langevin

*  EBM learns from data as usual

*  Generator learns from EBM revision with known z: MCMC teaching

*  Generator amortizes EBM’s MCMC and jumpstarts EBM’s MCMC

*  EMB’s MCMC refinement serves as temporal difference teaching of generator
*  Generator can provide unlimited number of examples for EBM,

* Vs GAN: an extra refinement process guided by EBM

6
G2 updating

Generator

(5)

( observed examples ]7

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Cooperative Learning via MCMC Teaching

Basic idea of MCMC teaching

N
1
1
1
1
1
1
1
1
1
1
Y
N
N

EBM pg(x) Generator q,(x)

* Double line arrows indicate generation and reconstruction in the generator network
* Dashed line arrows indicate Langevin dynamics for revision and inference in the two models.

* The diagram on the left illustrates a more rigorous method, where we initialize the Langevin inference of {Z;} in Langevin
inference from {Z;}, and then update «a based on {Z;, X;}.

* The diagram on the right shows how the two nets jumpstart each other’s MCMC without Langevin inference.

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

1JCAI 2022 Tutorial on Deep Energy-Based Learning
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Cooperative Learning via MCMC Teaching

Theoretical understanding

g Markov M ection
transitio

Learning EBM by modified contrastive divergence DKL (pdata”pﬁ') . ID)KL (Mg(t) 4o t) ||p9)

Learning generator by MCMC teaching Dx1, (Mg(t) Qo) ||Qa)

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Cooperative Learning via MCMC Teaching

Image synthesis

—

interpolation by the learned generator

image inpainting

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018

Jianwen Xie 1JCAI 2022 Tutorial on Deep Energy-Based Learning



Cooperative Conditional Learning

Conditional Latent Variable Model (C-LVM)

O model

o) -
c Initialize !
L. | Mol A B -
2~ N0 D)z =ga(z,¢) + €6 ~ N(0,0°I) & le——Tinitial synthesis | T
' . r i synthesis
£ e !
Conditional Energy-Based Model (C-EBM) E E ————> |earning
) © Refines'@) @ 5 -—--3 > sampling
_ etriivrrite 1 slE
po(ele) = 7oy explfo(@, )] R e
A ‘observed example ——
Ti+At = Tt + 7v:cf9 (74, ¢) + V Atey Diagram of energy-based cooperative conditional learning

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Cooperative Conditional Learning

Label-to-Image generation Image-to-Image generation
0 /234567849 E N )
O)lA3ILS56 189 é:’ P~ & == .~
8/ A24567%7 '
0|l 235067 %9 & ; s, ,
601234%¢n%q "-/“ - =
0lt23493e72r4 = e
0113456785 ~“/“"
O/)aA3 46399 ) ‘
01834 £63 €9 Lo oo
CIlI254£56786G
TNEEM Py Binary Segmentation (Saliency Prediction)
| 9.
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|

Image Our Samples

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
[2] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022
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Cycle-Consistent Cooperative Network

* Twodomians{x;; i=1,..,n,} € X and {yi;i =1, ...,ny} € Y without instance-level correspondence

* Cycle-Consistent Cooperative Network (CycleCoopNets) simultaneously learn and align two EBM-generator pairs

1
Y= X {p(x;0x),Gy_x(y;ax)} p(%:0x) = 75 exp[f (:6:)] po(e)
X —YV:{pyby),Gxoy(r;ay)}

p(1:0y) = 5z exp 1 (4:0.)]mo(v)

where each pair of models is trained via MCMC teaching to form a one-way translation. We align them by
enforcing mutual invertibility, i.e.,

r; = Gy x (Gxoy (Tiay) s ax)

yi = Gaoy (Gysa (yisax) say)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

.\10ncl \n Gogh ) Cezanne Ukiyo-e Input CycleGAN UNIT DRIT

\\

winter = summer

Collection style transfer from photo realistic images to artistic styles Season transfer

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cooperative Learning via Variational MCMC Teaching

To retrieve the latent variable of {X;} generated by EBM in the cooperative learning, a tractable
approximate inference network nﬁ(zlx) can be used to infer {Z;} instead of using MCMC
inference. Then the learning of mz(z|x) and q,(x|z) forms a VAE that treats the refined

synthesized examples {X;} as training examples.

Variational MCMC teaching of the inference and generator networks is a minimization of

variational lower bound of the negative log likelihood

L, B) = log qa (2;) — vDxkL (ﬂ'ﬁ (2i]24) ||qa (2:]24))]

n
1=1

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021

Jianwen Xie
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Cooperative Learning via Variational MCMC Teaching

, a® i
Zl ---------- > “l Zj Zi fl
[
[
a(t) a(t+1) a(t) a(t+1) a(t) B(t) I a(t+1)
[
I
__________ n T Rm——_ v __________>||~
Xi g X Xi g i o gl M
(@) MCMC teaching (b) fast MCMC teaching (c¢) variational MCMLC teaching

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021
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Image synthesis
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[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021



Cooperative Learning of EBM and Normalizing Flow

Normalizing flow T = ga(2); 2~ qo(z)

qo IS a known Gaussian noise distribution. g, is an invertible transformations where the log determinants of
the Jacobians of the transformations can be explicitly obtained.

Under the change of variables, distribution of x can be expressed as

da(x) = qo(2)

det(Jac(g))

Ga(2) = q0(g5" (¥))| det(Dgg " () /)]

Ja 1S composed of a sequence of transformations g, = ga1 * 9az--- 9am » therefore, we have

Ga(2) = qo(g5" ()T, | det(Ohi—1/Ohs))|

[1] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. NIPS 2018

Jianwen Xie 1JCAI 2022 Tutorial on Deep Energy-Based Learning



Cooperative Learning of EBM and Normalizing Flow

T = ga(2); 2~ qo(z)

do(x) = qo(ggl(gj))l__[?lﬂ det(Oh;_1/0h;)| In general, it is intractable !!

The key idea of the flow-based model is to choose transformations g whose Jacobian is a triangle
matrix, so that the computation of determinant becomes

| det(8h2_1/8h2)| = H|d1ag(8hz_1/8hz)|

diag() takes the diagonal of the Jacobian matrix

Maximum likelihood estimation of ¢ |min, KL(pgatal/¢a)

[1] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. NIPS 2018
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Cooperative Learning of EBM and Normalizing Flow

The CoopFlow Algorithm
At each iteration, we perform

(Step 1) For i = 1,..., m, we first generate z; ~ N(0, Ip), and then
transform z; by a normalizing flow to obtain % = g.(z).

(Step 2) Starting from each X;, we run a Langevin flow (i.e., a finite
number of Langevin steps toward an EBM py(x)) to obtain X;.

(Step 3) We update « of the normalizing flow by treating X; as training
data.

(Step 4) We update 6 of the Langevin flow according to the learning
gradient of the EBM, which is computed with the synthesized examples
X; and the observed examples.

[1] Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li. A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model. ICLR 2022
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Cooperative Learning of EBM and Normalizing Flow

Image synthesis
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Generated examples (32 x 32 pixels) by CoopFlow models trained from CIFAR-10, SVHN and Celeba datasets respectively.

[1] Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li. A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model. ICLR 2022
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Part 4: Deep Energy-Based Models in Latent Space

Background
Deep Energy-Based Models in Data Space

Deep Energy-Based Cooperative Learning

b=

Deep Energy-Based Models in Latent Space
. Latent Space Energy-Based Prior Model
. Learning by Maximum Likelihood
. Prior and Posterior Sampling
. Learning and Sampling Algorithm of Latent Space EBM
. Latent Space Energy-Based Model for Sequential Data
. Latent Space EBM for Trajectory Prediction
. Conditional Learning with Latent Space EBM
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Latent Space Energy-Based Prior Model

x: observed example (e.g., an image); z: latent vector.

fa(z)

po(x, 2) = pa(2)ps(z|2)

t
1 <
Pa(2) = o exp(fal2))po(2)
(@) § 98(2)
z=gp(z) +e X

*  EBMp,(z) defined on latent space z, standing on a top-down generator.
* Exponential tilting of py(2), po is non-informative isotropic Gaussian or uniform prior.
* Empirical Bayes: learning prior from data, latent space modeling.

* Learning regularities and rules in latent space.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Learning by Maximum Likelihood

Log-likelihood  L(0) = "logpy () let 0 = (a, 5)

- Zlog —/pg (24, 2;) dz] t
= ilog -fpa (i) ps (@i | Zi)dz] <
- § 95()
Pal2) = gry eplfalp()  psle | 2) =N (g5(2),0°In) x

Gradient for a training example

Vg logpg(m) o Epg(z|sc) [Vﬂ log pg (.CU, z)]
. Epe(Zlcv) [V (log pa(2) + logpﬁ(x | 2))]
= Epy(212) [Vo10gPa(2)] 4+ Epy(212) [Vo logps(w | 2)]

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Learning by Maximum Likelihood

* Learning EBM prior: matching prior and aggregated posterior
fa(2)
5a(2) = Vo log py(2) ;
— Lipg(z|x) [vafa(z)] - ]E'pa(Z) [Voefa(z)] ‘ g (Z)
B
* Learning generator: reconstruction e

6p(z) = Vglogpe(z)
= Ep,(212) [V log ps(z|2)]

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlPS, 2020
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Prior and Posterior Sampling

(1) Sampling from prior via Langevin dynamics {z;} ~ pa(z) o exp(—Uqy(2))
1

FHsz

let Uy (2) = —fal(2) +

Zia1 = 2t — OV Us(24) + V206, 2 ~ po(z), e ~ N(0,1),

(2) Sampling from posterior via Langevin dynamics {z:'} ~ Do (Z | m)

po(z | @) = po(x,2)/po() = pa(2)Ps(2 | 2)/po(z)

1
21 =2 — 0 |VoUn(2) — = (@ — 95 (2)) Vogp (2¢) | + \/%et, 20 ~ po(2), e ~ N(0,1)
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Learning and Sampling Algorithm of Latent Space EBM

fort=0:7T—1do
1. Mini-batch: Sample observed examples {x; } ;.
2. Prior sampling: For each z;, sample z; ~ pq,(2) by Langevin sampling from target distribution
m(2) = pa,(2), and s = 509, K = K.
3. Posterior sampling: For each x;, sample z:' ~ Po, (z|x;) by Langevin sampling from target
distribution 7(2) = pe, (z|z:), and s = s1, K = K.
4. Learning prior model: a:y1 = e +1m0= > 1o, [Vafa, (2]7) — Vafa, (27))-
5. Learning generation model: 8,1 = 8 + i+ > 1" Vglogpg, (z:]z).

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Learning and Sampling Algorithm Latent Space EBM

Image Generation

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Latent Space Energy-Based Model for Sequential Data

RNN/auto-regressive generation model for sequential data

x: observed example (e.g., text); z: latent vector. f (Z)
(87
po(x,2) = pa(2)pg(z|2) 1
A
1
Pa(2) = o exp(fa(2))po(2) l 95(2)
(a) B
X

pg(|2) Hpﬁ (z®zD . 2D 2

t=1

* zisan abstraction vector about the whole sequential data and controls the generation of sequential data at
each time step.
*  May be applied to text data or other time series data.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Latent Space Energy-Based Model for Sequential Data

Text Generation

Forward Perplexity (FPPL), Reverse Perplexity (RPPL), and Negative Log-Likelihood (NLL) for the latent space

z is a thought vector about the whole sentence and controls the generation of the sentence at each time step.

Enables abstraction of a whole sentence.

energy-based prior model and baselines on SNLI, PTB, and Yahoo datasets.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020

Jianwen Xie

SNLI PTB Yahoo
Models FPPL RPPL NLL FPPL RPPL NLL FPPL RPPL NLL
Real Data 23.53 - - 100.36 - - 60.04 - -
SA-VAE 39.03 46.43 33.56 147.92 210.02 101.28 128.19 148.57 326.70
FB-VAE 39.19 4347 28.82 145.32 204.11 92.89 123.22 141.14  319.96
ARAE 4430 8220 28.14 165.23 232.93 91.31 158.37 216.77  320.09
Ours 27.81 31.96 28.90 107.45 181.54 91.35 80.91 118.08 321.18
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Latent Space Energy-Based Model for Sequential Data

Molecule Generation

(1) RNN/auto-regressive model for molecule SMILES sequence (2) EBM prior captures chemical rules implicitly

o i {fxb.( o s 145 l'_,)-C(ILO o3y {d :‘:p -0, Model Model Family ~ Validity w/ check  Validity w/o check  Novelty = Uniqueness
' 5 - GraphVAE (Simonovsky et al., 2018) Graph 0.140 - 1.000 0.316
CGVAE (Liu et al., 2018) Graph 1.000 - 1.000 0.998
GCPN (You et al., 2018) Graph 1.000 0.200 1.000 1.000
i NeVAE (Samanta et al., 2019) Graph 1.000 - 0.999 1.000
Q;_\b ~r°0 5‘*5)5 Q{)}'& \‘OJ-Q (,2/‘*'0 \o-?"ck MRNN (Popova et al., 2019) Graph 1.000 0.650 1.000 0.999
GraphNVP (Madhawa et al., 2019) Graph 0.426 - 1.000 0.948
GraphAF (Shi et al., 2020) Graph 1.000 0.680 1.000 0.991
\;} ChemVAE (Gomez-Bombarelli et al., 2018) LM 0.170 - 0.980 0.310
X Y Q*‘H_ 6‘( GrammarVAE (Kusner et al., 2017) LM 0.310 - 1.000 0.108

Q-&"ﬁ S P E e O ‘or o '~§ SDVAE (Dai et al., 2018) LM 0.435 N ; -

FragmentVAE (Podda et al., 2020) LM 1.000 - 0.995 0.998
Ours LM 0.955 - 1.000 1.000

(a) ZINC (b) Generated
(a) Samples from ZINC dataset (b) Synthesized molecules

. Validity: the percentage of valid molecules among all the generated ones
Evaluations - Novelty: the percentage of generated molecules not appearing in training set

. Uniqueness: the percentage of unique ones among all the generated molecules

[1] Bo Pang, Tian Han, Ying Nian Wu. Learning Latent Space Energy-Based Prior Model for Molecule Generation. Workshop at NeurlIPS, 2020

Jianwen Xie 1JCAI 2022 Tutorial on Deep Energy-Based Learning



Latent Space EBM for Trajectory Prediction

» z:latent thought/belief of whole trajectory (event)
* Prediction as inverse planning

* Energy as cost function, defined on whole trajectory

|| ETH | HOTEL | UNIV | ZARAI | ZARA2 | AVG
| ADE | FDE Linear * [1] 133/2.94 | 039/0.72 | 0.82/1.59 | 0.62/1.21 | 0.77/1.48 | 0.79/1.59
S-LSTM[1] || 31.19 | 56.97 SR-LSTM-2* [01] || 0.63/1.25 | 0.37/0.74 | 0.51/1.10 | 0.41/0.90 | 0.32/0.70 | 0.45/0.94
S-GAN-P[15] || 2723 | 4144 S-LSTM[1] 1.09/235 | 0.7971.76 | 0.67/1.40 | 0.47/1.00 | 0.56/1.17 | 0.72/1.54
MATE[01] || 22.50 | 33.53 S-GAN-P[17] 0.87/1.62 | 0.67/1.37 | 0.76/1.52 | 0.35/0.68 | 0.42/0.84 | 0.61/1.21
Desire (5] ([ 1925 [ 34.05 SoPhie [0/ 0.70/1.43 | 0.76/1.67 | 0.54/1.24 | 0.30/0.63 | 0.38/0.78 | 054/ L.I5
b - : MATF [0 0.81/1.52 | 0.67/1.37 | 0.60/1.26 | 0.34/0.68 | 0.42/0.84 | 0.57/1.13
SoPhie [50] 16.27 | 29.38 CGNS [°6 0.6271.40 | 0.707/0.93 | 0.48/1.22 [ 0.32/0.59 | 0.35/0.71 | 0.49/0.97
CF-VAE [1] || 12.60 | 22.30 PIF [10] 0.73/1.65 | 0.30/0.59 | 0.60/1.27 | 0.38/0.81 | 0.31/0.68 | 046/ 1.00
P2TIRL [7] 12.58 | 22.07 STSGN [0-] 0.75/1.63 | 0.63/1.01 | 0.48/1.08 | 0.30/0.65 | 0.26/0.57 | 0.48/0.99
SimAug [2¢] || 10.27 | 19.71 GAT 7] 0.68/1.29 | 0.6871.40 | 0.57/1.29 | 0.29/0.60 | 0.37/0.75 | 052/ 1.07
PECNet[17] || 9.96 | 15.88 Social-BiGAT [11] || 0.69/1.29 | 0.49/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.48/1.00
Social- STGCNN [1] || 0.64/1.11 | 0.49/0.85 | 0.44/0.79 | 0.34/0.53 | 0.30/048 | 0.4470.75
Ours || 887 | 15.61 PECNet [11] 0.54/0.87 | 0.18/0.24 | 0.35/0.60 | 0.22/0.39 | 0.17/0.30 | 0.29/0.48

Table 1. ADE / FDE metrics on Stanford Drone for LB-EBM

Ours | 0.30/0.52 | 0.13/0.20 | 0.27/0.52 [ 0.20/0.37 | 0.15/0.29 | 0.21/0.38

compared to baselines are shown. All models use 8 frames as
history and predict the next 12 frames. The lower the better.

Table 2. ADE/ FDE metrics on ETH-UCY for the proposed LB-EBM and baselines are shown. The models with * mark are non-probabilistic.
All models use 8 frames as history and predict the next 12 frames. Our model achieves the best average error on both ADE and FDE metrics.
The lower the better.

Figure 2. Qualitative results of our proposed method across 4 different scenarios in the Stanford Drone. First row: The best prediction result
sampled from 20 trials from LB-EBM. Second row: The 20 predicted trajectories sampled from LB-EBM. Third row: prediction results of
agent pairs that has social interactions. The observed trajectories, ground truth predictions and our model’s predictions are displayed in
terms of white, blue and red dots respectively.

[1] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory Prediction with Latent Belief Energy-Based Model. CVPR, 2021
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Conditional Learning with Latent Space EBM

Conditional Learning for Saliency Prediction

Transformer Encoder ____________
I: input image. z: latent vector. S: saliency map e —

I +fi—fo—fs —*f4—’fs~:—'/@-' ngarogation — To(12)
Transformer Generator s = Ty(I,z) +¢ T z

1
Z(a)

EBM prior 7z ~ pa(z) Pa(z) = exp [—Uq(2)] po(2)

Residual noise € ~ N(0,0%Ip)

* EBM defined on z, standing on a latent space of the transformer generator.
* Exponential tilting of py(2), py(2) is the non-informative isotropic Gaussian distribution.
*  Empirical Bayes: learning prior EBM from data

Image Predictions by samphng

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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Conditional Learning with Latent Space EBM

Input images "“" e 1., 'u.sﬂ 2

e PR
1
o PR B

Table 1: Performance comparison with benchmark RGB salient object detection models.

DUTS [67] ECSSD [79] DUT [80] HKUIS [38] PASCALS [40] SOD (48]
Method  |So 1Fz TEe M S, TF,B 1B 1M USa 1Fs 1Bs 1M YSa 1Fg 1Ee tM USa 1Fg 1B tM USa 1Fa 1Ee TM |
CPD[72] | 869 821 898 043|913 937 040 825 742 847 .056| 906 892 038 034| 848 819 882 071|799 779 BI1 088

SCRN [73] | .885 .833 .900 .040|.920 .9I0 933 041 | 837 749 847 .056| 916 .894 935 .034|.86Y .833 .892 .063|.817 .790 .829 .087
PoolNet [41] .887 .840 910 .037|.919 913 938 .038 | .831 .748 .848 .054| .919 903 945 .030|.865 .835 .896 .065|.820 .804 .834 .084
BASNet [58] .876 .823 .896 .048|.910 913 .938 .040| .836 .767 .865 .057|.909 903 943 .032|.838 .818 .879 .076|.798 .792 .827 .094
EGNet [88] | .878 .824 898 .043|.914 906 .933 .043 | .840 .755 .855 .034| .917 900 .943 .031|.852 .823 .881 .074|.824 .811 .843 .081
F3Net [70] | .B88 .852 920 .035|.919 .921 .943 .036|.839 .766 .864 .053| .917 910 952 .028|.861 .835 .898 .062|.824 814 .850 .077
ITSD [90] | .886 .841 917 .039].920 916 .943 .037|.842 .767 .867 .056|.921 906 .950 .030|.860 .830 .894 .066|.836 .829 .867 .076
Ours 912 .891 951 .025]|.936 .940 .964 .025|.858 .802 .892 .044|.928 .926 .966 .023|.874 .876 .918 .053|.850 .855 .886 .064

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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