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Disclaimer: References are not comprehensive or complete. Please refer to our papers for more references.
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Part 1: Background
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. Deep FRAME Model

. Deep Energy-Based Models — Generative ConvNet

. Three Research Directions of Deep Energy-Based Learning
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Knowledge Representation: Sets,

Concepts and Models

Image Space

7/ < - S

How a human sees an image
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How a computer sees an image

An image is a collection of numbers
indicating the intensity values of the
pixels and is a high dimensional object.

A population of images (e.g., images of
faces, cats) can be described by a
probability distribution.

A probabilistic model is a probability
distribution parametrized by a set of
parameters, which can be learned from
the data.

Probabilistic models enable supervised,
unsupervised, semi-supervised learning,
and model-based reinforcement learning.
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Knowledge Representation: Sets, Concepts and Models

Image Space

Consider the space of all the image patches of a fixed size (e.g., 10 x 10 pixels).
We can treat each image as a point. We have a population of points in the image space.
We may consider an analogy between this population and our three-dimensional universe.

A concept, e.g., cat
(a set of cat images)

An image

Left: the universe with galaxies, stars and nebulas. Right: a zoomed-in view.
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Knowledge Representation: Sets, Concepts and Models

A concept () is a set or equivalence class of images I :

Y/ (hc) — {I : H(I) = hC} + € for statistical fluctuation

H(I) is the minimum sufficient statistical summary of image I.

This set derives a statistical model:

Markov Random Fields, Gibbs distributions, Energy-based models, Descriptive model, Maximum
entropy model, exponential family models

Concept ) <<= Set h, <==> Model 6
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Pattern Theory

General Pattern Theory

In 1970, Ulf Grenander was a pioneer using statistical models for various visual patterns

In recent decades, Grenander contributed to computational statistics, image processing, pattern recognition, and artificial intelligence.
He coined the term pattern theory to distinguish from pattern recognition.

Grenander’s General Pattern theory is a mathematical formalism to describe knowledge of the world as patterns.

UIf Grenander

brain activity patterns

crystal patterns face patterns Constellation patterns in the sky.

[1] UIf Grenander. A unified approach to pattern analysis. Advances in Computers, 10:175-216, 1970.
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Pattern Theory

Pattern Theory for Vision

The Brown University Pattern Theory Group was formed in 1972 by Ulf Grenander.
Many mathematicians are currently working in this group, noteworthy among them being the Fields Medalist David Mumford.

Mumford advocated Grenander’s pattern theory for computer vison and pattern recognition.

David Mumford

PatternTheory

[1] Mumford, David and Desolneux Agnes. Pattern theory: the stochastic analysis of real-world signal. CPC Press. 2010.
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Pattern Theory

Principles in Pattern Theory

Patterns are represented by statistical generative models that are in the form of probability distributions.

Such models can tell us what the patterns look like by sampling from the statistical models.

The models can be learned from the observed training examples via an “analysis by synthesis” scheme.

Pattern recognition can be accomplished by likelihood-based or Bayesian inference.
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Texture Modeling

In 1962, a pioneer Bela Julesz [1] initiated the research on texture perception in pre-attentive vision by raising the
following fundamental question:

What features and statistics are characteristics of a texture pattern, so that texture
pairs that share the same features and statistics cannot be told apart by pre-attentive

human visual perception?
— Béla Julesz

Two different marble texture images.
They are from the same concept.
How can we model them?

February 19, 1928 — December 31, 2003.

[1] Bela Julesz. Visual pattern discrimination. IRE transactions on Information Theory, 8(2):84-92, 1962.
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Texture Modeling

Julesz’s question implies two challenging tasks (sub-questions):

1. What are the internal statistical properties that define a texture from the human perception
perspective ?

2. Given a set of statistical properties, how can we synthesize diverse realistic texture patterns
with identical internal statistical properties?

These two questions motivate various researchers on pursuing statistical representation
and learning frameworks for texture synthesis.

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Clique-Based Markov Random Field

Markov Random Fields (MRF) models were popularized by Julian Besag in 1973 [1] for modeling spatial
interactions on lattice systems and were used by Cross and Jain in 1983 [2] for texture modeling.

C is the set of cliques of a graph over the pixel lattice;
@ are clique potentials over the pixels in clique C;
Z is the normalizing constant.

(a) Lattice structure of an MRF (b) Toy example of a general MRF

In early Gibbs image models, the cliques are groups of neighboring pixels and the potentials capture simple
clique features, such as consistency of pixel intensity.

[1] Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), pages 192-236, 1973
[2] George R Cross and Anil K Jain. Markov random field texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence. (1):25-39, 1983.
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FRAME (Filters, Random field, And Maximum Entropy)

1 k I denotes the image

po(I) = m exp ; I:EZD Orh ({1, Bk,w)) q(I) x: pixel, position; D: domain of x

By x is Gabor filter of type (scale/orientation) k at position x

(I, By x) is filter response
Input Image of 4
acircle

h(): non-linear rectification

q(I): reference distribution (e.g., uniform or Gaussian noise)

Markov random field, Gibbs distribution
Maximum entropy distribution

Exponential family model

A bankof 16 Gabor Filters

The outputcircle as seenwhen pass
through individual Gabor filter

Original image, Gabor filters, filtered images (taken from internet) One convolutional Iayer (given)

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. 1JCV, 1998.
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FRAME (Filters, Random field, and Maximum Entropy)

For each pair of texture images, the image on the left is the observed image, and the image on the
right is the image randomly sampled from the model.

[1] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. 1JCV, 1998.
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Inhomogeneous FRAME Model

The inhomogeneous FRAME model [1] for object patterns

po(I) = ZE exp Zzﬁ’km ((L, Br.2)) | a(I)

k=1x€D

Analysis by synthesis: (use Hamiltonian Monte Carlo to sample images)

0(t+1) 9 Z h({I;, Bk %)) — = Z h({ Iz, Bi.2))

more synthesized examples

[1] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Inhomogeneous FRAME Models for Object Patterns. (CVPR) 2014
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Sparse FRAME Model

The Sparse FRAME model [1,2] is a sparsified inhomogeneous FRAME. (Interpretable!)

po(l) = Z%‘f") exp Z 0;h (<I=Bkj:$j>) q(I)

Jj=1
B = (B = B, z;,] =1, m) is the set of wavelets selected from the dictionary
Generative boosting [1] and Shared Sparse Coding [2] are two methods to sparsify the model

One convolutional layer (given), one sparsely connected layer (learned 6;)

synthesized examples

Analysis by synthesis

§ 2 (1 Br)) ~ 5 2 (1 B )

i=1

9§H—1) Q(t +

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. Inducing Wavelets into Random Fields via Generative Boosting. Journal of Applied and Computational Harmonic Analysis (ACHA) 2015
[2] Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu. Learning Sparse FRAME Models for Natural Image Patterns. International Journal of Computer Vision (1JCV) 2014
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Hierarchical Sparse FRAME Model

The Hierarchical Sparse FRAME model [1] is a is a generalization of the Sparse FRAME model by decomposing it into

multiple parts that are allowed to shift their locations, scales and rotations, so that the resulting model becomes a
hierarchical deformable template. (More Interpretable!)

K nj

1 3
p(LH,A) = 708) exp ZZ /\1(.])|(I, Bzgﬁ,sgi),agj)ﬂ q(I)

j=11i=1

H = {(B @) G, (J),Z—l ani), =1, K}

Input imgaes
is the set of wavelets selected from the dictionary.

7). . Objects
A= {()\E ), 1 = 1, ceny ’I’LJ),] S 1, ceey K} are parameters. (a) Hierarchical sparse FRAME

Jj indexes the parts, i indexes the wavelets.
x: location, s: scale, a: orientation. ! i

T M GV M =00 4TINSy
Mwﬂ}]ﬂ,ﬂ"&éyfﬂ Parts

EM-type algorithm alternates inference and re-learning steps.

EEEECZZZZZAAAMD MMM TN YYNNNNS

(b) Inference (c) A mixture of hierarchical sparse FRAME models

Gabor
S= filters

[1] Jianwen Xie, Yifei Xu, Erik Nijkamp, Ying Nian Wu, Song-Chun Zhu. Generative Hierarchical Learning of Sparse FRAME Models (CVPR) 2017

Jianwen Xie
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Deep FRAME Model

{Fk(l),k = 1,...,K} is abank of filters
at a certain convolutional layer [ of a
pre-learned ConvNet, e.g., VGG.

VGG convolutional layer (given), one fully connected layer (learned) Synthesis by Langevin dynamics

[1] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. AAAI 2016
[2] Ying Nian Wu, Jianwen Xie, Yang Lu, Song-Chun Zhu. Sparse and Deep Generalizations of the FRAME Model. Annals of Mathematical Sciences and Applications (AMSA) 2018
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Deep Energy-Based Models - Generative ConvNet

* LetIbe animage defined on image domain D, the Generative ConvNet is a probability distribution defined on D.

1
Z(0)

po(I) = exp (fo (1)) ¢(I)

1 I
where g(I) is a reference distribution, e.g., uniform or Gaussian distribution ¢(I) = 7 OXP (2—2\\1\2)
(2mo2) o

* Z(0) is the normalizing constant  Z(6) = /I'exp (fo(I)) ¢(I)dI

* fo(I) is parameterized by a ConvNet that maps the image to a scalar. 8 contains all the parameters of the ConvNet.

It is seen as a multi-layer generalization of the FRAME model.

input RGB image A

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016

feature maps
< 1% layer

sub-sampled

Training images Training images T

raining images
,.svii

i
Synthesized images

Synthesized i Synthesized images
P

~ feature maps

2™ layer

Jianwen Xie
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Three Research Directions of Deep Energy-Based Learning

1 - S
pe(I) = exp (fo(I))q(I) [ BB T '
Z() | ,. o
(Xie, Lu, Zhu, Wu. ICML, 2016) £ T—— —
Part 2: Deep EBMs in Data Space Part 3: Deep EBMs in Cooperative Learning Part 4: Deep EBMs in Latent Space

(6)
G2 updating

Generator

5 ;.v.'z_iff ey f(l’ (Z) EBM
hdie Mk )

face scene

= v % % EIEIE
++% EHEF

video 3D volumetric shape 3D point cloud

igﬁ(Z)

observed examples |—
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Part 2: Deep Energy-Based Models in Data Space

1. Background . Generative PointNet: EBMs for Unordered Point Clouds

. . Energy-Based Continuous Inverse Optimal Control
2. Deep Energy-Based Models in Data Space

3. Deep Energy-Based Cooperative Learnin
Maximum Likelihood Estimation of Generative ConvNet P oy P 9

. Mode Seeking and Mode Shifting 4. Deep Energy-Based Models in Latent Space
Adversarial Interpretations
. Short-run MCMC for EBM
Multi-Grid Modeling and Sampling
. Multi-Stage Coarse-to-Fine Expanding and Sampling
Energy-Based Image Inpainting
. One-Sided Energy-Based Image-to-Image Translation
Patchwise Generative ConvNet for Internal Learning
. Spatial-Temporal Generative ConvNet: EBMs for Videos

Generative VoxelNet: EBMs for 3D Voxels
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Maximum Likelihood Estimation of Generative ConvNet

1 A . likali .
Model:| Do (a:) _ Z(e) eXp(fe (a:)) Derivation of gradient of the log-likelihood:
Vologpe(x) = Vo fo(x) — Vglog Z(0)
Z(0) = /exp(fg (z))dx where the term Vylog Z(6)can be rewritten as
Vo log Z(60) = ——Vy2(6)
Z(9)
Observed data {.7:1, . :En} ~ Pdata(fﬂ) 1
= MVB/GXP(fO(x))dm
Objective function of MLE learning is .
1 — s | et Veu(e)da
L(9) = - Zlogpg(:zz-) 2(9)1
= = / A0 exp(fo(z)) Vo fo(z)dx
The gradient of the log-likelihood is ( )
0) 1 i (@) Vofol@) - /p9($)vefo($)d$
L'(0)=—=> Vofo(ri) — Ep,z)[VoSo(z
e ’ = Epp(2)[ Vo fo(z)]
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Maximum Likelihood Estimation of Generative ConvNet

Given a set of observed images {-731, ey iUn} ~ pdata(w)

Gradient of MLE learning -

e.g., x is a 100x100 grey-scale image

L'(0) =E —E
(0) Pdata () Vo fo(z)] MP@(SC) Vo fo()] Each pixel ~ [0, 255].

1 — 1 & ~ Image space is 256 10000 |
=Y Veofo(z:) 4= Y Vefo(Es)
L =1 L 1=1

&Q

Intractable!!

Approximated by MCMC {531» ooy féﬁ} ~ Po (39)

The expectation is analytically intractable and has to be approximated by Markov chain Monte Carlo (MCMC),

such as Langevin dynamics or Hamiltonian Monte Carlo (HMC).

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Maximum Likelihood Estimation of Generative ConvNet

Gradient-Based MCMC and Langevin Dynamics

1
For high dimensional data x, sampling from pg(z) = 70 exp(fo(x)) requires MCMC, such as Langevin dynamics
At
Tt+At — Tt + 7me9(f£t) + V Atet €t ~~ N(O, I)
Gradient ascent Brownian motion

As At — 0 and t — oo, the distribution of x; converges to pg (x).
At corresponds to step size in implementation.

Different implementations of the synthesis step:
(i) Persistent chain: runs a finite-step MCMC from the synthesized examples generated from the previous epoch.
(ii) Contrastive divergence: runs a finite-step MCMC from the observed examples.

(iii) Non-persistent short-run MCMC: runs a finite-step MCMC from Gaussian white noise.
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Maximum Likelihood Estimation of Generative ConvNet

Analysis by Synthesis
Input: training images {Z1, .., Zn} ~ Pdata(T)
Output: model parameters @

Fort=1to N

observed statistics synthesized statistics

synthesis step: {%9, ..., %7} ~ pg, (T) / /

1 & 1o
analysis step: 9t-|—1 = 9,5 + Mt H ; Vefa(fl?i] - % ; Vefa(iz‘)

End

Alternating back-propagations Vg fp (x) and V., fg(x)

[1] Jianwen Xie, Yang Lu, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML, 2016
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Mode Seeking and Mode Shifting

Mode seeking and mode shifting

—— true model x observed data
learned model o synthesized data
fx) 4 fOA /><\
O L RO : >x
(1) mode searching x (3) mode chasing
f)4 1 /\
> 2000000 > x

(4) mode matching

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Adversarial Interpretation

* The update of 6 is based on

' 9) ~ %th?fﬁ'(xi) — %Zngg(:Ez
1=1 i=1
1 o 1o~
= Vo g L ol =5 2 fol@

where {591, 6ty :E'ﬁ}are the synthesized images generated by the Langevin dynamics

n

1
* Define avalue function V' ({Z;},0) = ng (i) — = Z fo(Z;)

« The learning and sampling steps play a minimax game: min max V({LC@} 9)

{Z:} 0

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019
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Short-Run MCMC for EBM

1

Model (Representation): pg (x) = Z(Q) eXp(fg (35')) A short-run MCMC: Let My be the transition
At kernel of K steps of MCMC toward pg(x).
MCMC (Generation): Ay = xy + — Vo fo(z) + V Atey For a fixed initial probability pg, the resulting

marginal distribution of sample x after

VeL(0) = Epdata(m)[vefg( z)] = Epﬁ(m)[vefg(x)] running K steps of MCMC starting from p,, is

~ =) Vofo@) = = > Vofel#) denoted by
a0(x) = Map(z) = [ pol2) Maal2)dz

Z~Po
x = Mpy(z,e)
Synthe5|s by short-run MCMC We can write x = My(z), where we fix e = (e),

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

Model distribution (Representation): D¢ (37) -

Short-run MCMC distribution (Generation):

Training 8 with short-run MCMC is no longer a maximum likelihood estimator (MLE) but a moment matching

estimator (MME) that solves the following estimating equation:

Epgaa [V9f9 (33')] = Eqg, [Vafg (QL‘)]
|

which is a perturbation of the maximum likelihood estimating equation.

» Not pg(x) !

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

Consider a simple model where we only learn top layer weight parameters:

* The blue curve illustrates the model distributions

corresponding to different values of parameter.

© = {po(z) = exp((0, h(x)))/Z(0), 0}

e The black curve illustrates all the distributions that

match pgata (black dot) in terms of E[h(x)]

Q= {p:Ep[h(z)] = Epyor [P(2)]}

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Short-Run MCMC for EBM

Short-Run MCMC as a generator model

9

54

-
% 55255 EEIER

Interpolation by short-run MCMC resembling a generator or flow model: The transition depicts the sequence Mg(Zp) with
interpolated noise z, = pz; + /1 — p? z, where p € [0,1] on CelebA (64X64). Left: My(z,) . Right: Mg(z,).

2 334
sss@%@%é%é

Reconstruction by short-run MCMC resembling a generator or flow model: min||x — My(2)||2. The transition depicts My (z;) over
zZ

time t from random initialization ¢ = 0 to reconstruction t = 200 on CelebA (64%x64). Left: Random initialization. Right: Observed
examples.

[1] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. On learning non-convergent non-persistent short-run MCMC toward energy-based model. NeurIPS, 2019
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Multi-Grid Modeling and Sampling

Y3
Y,
Yo Y,
-1
Ix1 4x4
S ———— 1 16x16 b4x64

Stage2: generate Y, from Y,

T
Stage3: generate Y; from Y,

* Learning models at multiple resolutions (grids)
* Initialize MCMC sampling of higher resolution model from images sampled from lower resolution model
* The lowest resolution is 1x1. The model is histogram

[1] Ruigi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Multi-Grid Modeling and Sampling

Image generation
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Inpainting
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Feature learning: EBM as a generative classifier

Test error rate with # of labeled images | 1,000 2,000 4,000

DGN 36.02 - -

Virtual adversarial 24.63 - -

Auxiliary deep generative model 22.86 - -
Supervised CNN with the same structure | 39.04 22.26 15.24
Multi-grid CD + CNN classifier 19.73 15.86 12.71

[1] Ruigi Gao*, Yang Lu*, Junpei Zhou, Song-Chun Zhu, Ying Nian Wu. Learning Energy-Based Models as Generative ConvNets via Multigrid Modeling and Sampling. CVPR 2018.
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Multi-Stage Coarse-to-Fine Expanding and Sampling

1

Z(G) eXp(f9 (.’L’))

po(T) =

\fu!'n.s'rrr;_w f,#ur.luug of(x) Smooth ,\mnphu; . f(x)

T noise i l

S5 i ! e

x(M Stage 1 'g ! +1G )
16x16 S I 0
x® Stage 2 T £ i :--2,( —x@e-—-- ,l,

32x32 ! w‘l -p? A32)(32
x3 Stage 3 x(s)__._}@_ __________ |

(a) (b)

Approach | Models | FID

VAE | VAE (Kingma & Welling, 2014) | 78.41

Aut . PixelCNN (Van den Oord et al., 2016) 65.93

ULOTEETESSIVE | pixelIQN (Ostrovski et al., 2018) 49 46

WGAN-GP (Gulrajani et al., 2017) 36.40

GAN SN-GAN (Miyato et al., 2018) 21.70

StyleGAN2-ADA (Karras et al., 2020) 2.92

Glow (Kingma & Dhariwal, 2018) 4599

Flow Residual Flow (Chen et al., 2019a) 46.37

Contrastive Flow (Gao et al., 2020) 37.30

MDSM (Li et al., 2020) 30.93

) Score-based NCSN (Song & Ermon, 2019) 25.32
s NCK-SVGD (Chang et al., 2020) 21.95
V% Short-run EBM (Nijkamp et al., 2019) 44.50
Multi-grid (Gao et al., 2018) 40.01

EBM EBM (ensemble) (Du & Mordatch, 2019) | 38.20

CoopNets (Xie et al., 2018b) 33.61

EBM+VAE (Xie et al., 2021d) 39.01

CF-EBM 16.71

* Training: incrementally grow the EBM from a low resolution (coarse model) to a high resolution (fine model)

by gradually adding new layers to the energy function.

* Testing: keep the EBM at the highest resolution for image generation using the short-run MCMC sampling.

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.

Jianwen Xie
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Multi-Stage Coarse-to-Fine Expanding and Sampling

@

v

ey | :g'

N

MCMC generative sequences on CelebA (50 Langevin steps)

Generated examples on CelebA-HQ at 512 X 512 resolution
[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR, 2021.
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Energy-Based Image Inpainting

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision 38



One-Sided Energy-Based Image-to-Image Translation

p(y) o< exp(f(y))

At
Yt+rAt = Y T 7Vyf(yt) + V Ate, Yo = T ~ Pdata(T)

[1] Yang Zhao, Jianwen Xie, Ping Li. Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling. ICLR 2021
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Patchwise Generative ConvNet for Internal Learning

External learning:

Learn a distribution of images within a set of natural images

OFEEH
™

7 NNV
A L & j*ﬂ]‘%&

@
: g
’;,

Internal learning:

Learn an internal distribution of patches within a single natural image

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Patchwise Generative ConvNet for Internal Learning

* A pyramid of EBMs, {pgs(l(s)),s =0, ..., S}, trained against a pyramid of images of different scales {I(s),s =
o,..,5} )

{pG(I(S)) . Z(QS) exXp [fGS(I(S))} ,8§=0,..., S}

Each pg, (I(s)) is responsible to synthesize images based on the patch distribution learned from the image

1) at the corresponding scale s -

L l Synthesis Real
"':‘: """"""" o ) """"""""""""
- Fors =0,..,S Wil ‘) e

9L ()

90, a(gs Jo. (I(S)) N %i la(ZS fo. (i%@)}

i=1

where a pyramid of synthesis {i(s),s =1,..,5}

are obtained via sequential multi-scale

sequential sampling.

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021

Jianwen Xie
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Patchwise Generative ConvNet for Internal Learning

. . up-sample
Multi-Scale Sampling up-sample up-sample p-samp

-----:mnmﬂﬂh

scaleg scale; scaleg scales scaley

“6) _ Z ~ Uy ((-1,1)%) s=0
o) =
K(s—1)

Upsample (i(s_l_) ) s>0

2
() _7(s) , O §(s) (s)
) 81()f (1) +acl

where t =0,.., K®) —1

scaler

multi-scale sequential sampling process starting from a randomly initialized Z

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Patchwise Generative ConvNet for Internal Learning

Unconditional Image Generation Results

Input : Synthesis Results 1 scale
0 .. . { s .

Random Image Samples. Each row demonstrates a single training example and multiple synthesis Influence of different numbers
results of various aspect ratios. of scales

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Patchwise Generative ConvNet for Internal Learning

Single Image Super Resolution

Super-Resolution results from BSD100. The first column shows the initial image used for training.

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Patchwise Generative ConvNet for Internal Learning

Train Image SinGAN

Image ManipUIation PatchGeCN (ours)

T\ 8

(1) Image harmonization

(2) Paint to Image (3) Image Editing

Train Image Paint Output Train Image Edited Inpu Output
> e —— o R et e

[1] Zilong Zheng, Jianwen Xie, Ping Li. Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning. CVPR 2021
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Spatial-Temporal Generative ConvNet: EBM for Videos

Energy-based Spatial-Temporal Generative ConvNets:

The spatial-temporal generative ConvNet is an energy-based model defined on the image sequence (video), i.e.,

I ={(x,t),x € D,t € T), 1
po(T) = g5 exp(fo(D)a(D

where f(I;60) is a bottom-up spatial-temporal ConvNet structure that maps the video to a scalar. g is the

Gaussian white noise model ’
. 2
Q(I) - (27TO‘2)|DXT|/2 exXp |:_ o2 ”IH :|

MLE update formula 6411 =0, + ¢

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision
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Spatial-Temporal Generative ConvNet: EBM for Videos

Generating dynamic textures with both spatial and temporal stationarity

%=’%=’ = f1;0)

spatial-temporal filters are convolutional
in both spatial and temporal domains.

For each example, the first one is the observed video, the other three are the synthesized videos.

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Spatial-Temporal Generative ConvNet: EBM for Videos

Generating dynamic textures with only temporal stationarity

N\ 70:0)

For each example, the first one is the observed video, and the other three are the synthesized videos.

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Spatial-Temporal Generative ConvNet: EBM for Videos

Q: Can we learn from incomplete training data?

Unsupervised inpainting /recovery

A: Learning + synthesizing (new example) + recovering (training example)

Recovery algorithm involves two Langevin dynamics:
1.  One starts from white noise for synthesis to compute the gradient. (the output is I;)

2. The other starts from the occluded data to recover the missing data. (the putput is ii)
1 & 1 &
carningstep Or1 = 00+ = > Vofo(l) = = > Vo fa(L)

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Spatial-Temporal Generative ConvNet: EBM for Videos

Learn the model from incomplete data / Energy-Based Inpainting
(1) Video recovery

(a) Single region masks (b) 50% missing frames (c) 50% salt and pepper masks

original training recovered original training recovered

(2) Background Inpainting

e

original training inpainted original training inpainted

[1] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Synthesizing Dynamic Pattern by Spatial-Temporal Generative ConvNet. CVPR 2017
[2] Jianwen Xie, Song-Chun Zhu, Ying Nian Wu. Learning Energy-based Spatial-Temporal Generative ConvNet for Dynamic Patterns. PAMI 2019

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Generative VoxelNet: EBM for 3D Voxels

Energy output

Energy-based Generative VoxelNet:
Q f(r:0)

3D deep convolutional energy-based model defined on the volumetric data x:

po(@) = 757 o (o@)

A

/
A

1
i1
i

1

where f(x; 8) is a bottom-up 3D ConvNet structure, and g(x) is the Gaussian

I
T

1
-

reference distribution. The MLE iterates: Eﬂ
At )
Sampling: T+ At = T + 7v$f9 (.’L't) + VvV Ate;
1 1<
Learning: Oty1 =0 +m; - Zl Vo fo(x;) — = Zl Vo fo(Z;) b AN
i= = voxel inpu

3D input

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Generative VoxelNet: EBM for 3D Voxels

3D Shape Generation

obs2 obs3 synl syn2 syn3 synd synS syn6 nnl nn2 nn3 nn4

PARLESRAA
O PP e
VOLVQYOVVAQRYYRIARS -

3D VAE [79]

chair

=

be

sofa

s ? 2 T * ? m ’ * 3D WINN [36] 8.81020.180
- Primitive GAN [34] 11.52040.330
% generative VoxelNet (ours) 11.7721+0.418
SOVAVSARIGANYE

Each row displays one experiment, where the first three 3D objects are observed, column 4-9
are synthesized, the last 4 are the nearest neighbors retrieved from the training set.

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision
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Generative VoxelNet: EBM for 3D Voxels

High Resolution 3D Generation via Multi-Grid Sampling

*  Multi-grid modeling:

A pyramid of Generative VoxelNets

A pyramid of observed examples

*  Multi-grid sampling procedure from low resolution to high resolution:

up-pooling up-pooling

up-pooling (-\4 (™

1x1x1 9

N )\ ) \ J
Y Y Y

K steps of Langevin K steps of Langevin K steps of Langevin

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Generative VoxelNet: EBM for 3D Voxels

High Resolution 3D Generation via Multi-Grid Sampling

Synthesized example at each grid is obtained by 20 steps Langevin sampling initialized from the synthesized
examples at the previous coarser grid, starting from the 1 X 1 x 1 grid.

16 X 16 X 16
16 1616

32x32x32

32x32x32

64 % 64 % 64

128 X 128 128 6464 X 64
128 x 128 x 128

b) sof:
(a) toilet () 5eln

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Generative VoxelNet: EBM for 3D Voxels

3D Shape Recovery
Task: Given any corrupted 3D shape, whose indices of corrupted voxels are

‘W’ o”
D

known, recover the corruption. i I

* Solution: Recover the 3D object by sampling on conditional generative VoxelNet: p(xy|xg; 0)
where M contains indices of corruption, M are indices of uncorrupted voxels, and Xy [ X are the corrupted /

uncorrupted parts of the shape.
Learning by recovery

9f9 -Tz

3

—_
i M =

Sampling: X~ p(xy|xg; 0)
. - 1 &
i | Oe1 =60+t gZWfG("’Z - =
=1

Starting from the corrupted x';, run K steps of Langevin dynamics to obtain &;

(1)
Fixing the uncorrupted parts of voxels %;(#;) « x;(M;)

(2)

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020

ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision
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Generative VoxelNet: EBM for 3D Voxels

iddddId BBl D,
Ll udie teLiLE
% ie teeoe R

(a) chair (c) toilet

VY2 S:
B DA g
VY2 HP S

(d) sofa

o0 »>
B+ P

recovered occluded original

(b) night stand

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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Generative VoxelNet: EBM for 3D Voxels

3D Super Resolution

 We perform 3D super resolution on a low-resolution 3D objects by sampling from
p(xhigh|xlow; ).
* Itislearned from fully observed training pairs {(xn;4n, X10w)}. In each iteration, we first up-scale x;,,, by

expanding each voxel into ad X d X d blocks (d is the scaling ratio) of constant intensity to obtain an up-

scaled version x,’u-gh of x;,», and then run Langevin dynamics staring from x,’ligh to obtain xp;4p.

%t'tttttéﬁssssss
333332 2RI 0 DD
COLL0L P SQRQQQTH

(a) toilet (b) sofa

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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Generative VoxelNet: EBM for 3D Voxels

3D Shape Classification

| Method | Accuracy |

Geometry Image [57] 88.4%

_ _ , PANORAMA-NN [59] OT.1%

1. Train a single energy-based generative VoxelNet ECC [61] 90.0%

: e trainine set of 3D ShapeNets [10] 83.5%

model on all categories of th g DeepPans [58] 253

ModelNet10 dataset in an unsupervised manner. SPH [56] 79.8%

LFD [55] 79.9%

. VConv-DAE [62] 80.5%

2. Use the model (i.e., network) as a feature VoxNet [16] 93.0%

extractor and train a multinomial logistic 3D-GAN [17] 91.0%

_ - 3D-WINN [36] 91.9%

regression classifier from labeled data based on Primitive GAN [34] 92.2%

generative VoxelNet (ours) 92.4%

the extracted feature vectors for classification.

A comparison of classification accuracy on the testing
data of ModelNet10 using the one-versus-all rule

[1] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Learning Descriptor Networks for 3D Shape Synthesis and Analysis. CVPR 2018
[2] Jianwen Xie, Zilong Zheng, Ruigi Gao, Wenguan Wang, Song-Chun Zhu, Ying Nian Wu. Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis and Analysis. TPAMI 2020
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Generative PointNet: EBM for Unordered Point Clouds

Energy-Based Generative PointNet:

where X = {x,k = 1,..., M} is a point cloud that contains M unordered points, and Z(0) = | exp f3(X) po(X)

exp fo(X)po(X)

is the intractable normalizing constant. py(X) is reference gaussian distribution. fg(X) is a scoring function that

maps X to a score and is parameterized by a bottom-up input-permutation-invariant neural network.

mlp (64, 128, 256, 512, 1024) mlp (512, 256, 64) his parameterized by a multi-
64 128 256 512 1024
o— B B S ) 024 layer perceptron network and
o Dl B B 3 =) 5 6 e
- -« = - . . .
Slol . |3 ) ] ® 5 8 g § g is a symmetric function,
e |5 - i - i N i Y i = 2 —| || || [—=
4 B adl Bl Bl B Bl B s ® shared R g s which is an average pooling
; ; i z S
S T R e W e I L B B | — function followed by a multi-

fo({x1, ..., xy D) = g({h(xy), ..., R(x,) ) layer perceptron network.

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Generative PointNet: EBM for Unordered Point Clouds

Point Cloud Generation

3D point cloud synthesis by short-run MCMC sampling from the learned model

Toilet

Bathtub

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021
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Generative PointNet: EBM for Unordered Point Clouds

Point Cloud Reconstruction

® Since the short-run MCMC is not convergent, the sampled X is highly dependent to its initialization z. We can regard the short-

run MCMC procedure as a K-layer flow-based generator model, or a latent variable model with z being the continuous latent

variable: X = Mg(z,e), z~py(2)

®  We reconstruct X by finding z to minimize the reconstruction error L(z) = ||X — Mg (2)||?, where My (z) is a learned short-run

MCMC generator.

Ground Truth

Energy-based Generative PointNet

PointFlow

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and

Classification. CVPR 2021

ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision
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Generative PointNet: EBM for Unordered Point Clouds

Point Cloud Interpolation

Linear Interpolation on latent space. Reconstruction from these latent Z

— e
z, = (1 —p)z; + pz; , p €[0,1]

Toilet

Chair

X = MQ(Z)

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021
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Generative PointNet: EBM for Unordered Point Clouds

Point Cloud Classification Unsupervised generative feature learning + supervised SVM learning

mlp (64, 128, 256, 512, 1024)
64 128 256 512 1024 o
[ | — — — —| c
— —> — — —> =
” — — — — — —| [e)
— —> > —> —>
: : g g : igd St SVM
& : i : - & n H S
s " H b4 H x H X ' X : X ><
I shared = shared = shared S shared & shared = ©
— ] —_}—> — — > —
Results on ModelNet10 Robustness test
[ Method Accuracy |
SPH[ 1] 79.8% = a2s
LFD [4] 79.9% = Fwo e
PANORAMA-NN [373] 91.1% 9;5 ?; 5’;
VConv-DAE [34] 80.5% o grere 9
3D-GAN [38] 91.0% 5. 5o Ehe
3D-WINN [16] 91.9% g Zus 2
3D-DescriptorNet [44] 92.4% gw o o
Primitive GAN [19] 92.2% 5 £ b
FoldingNet [51] 94.4% @ e @ s 2
1-GAN[1] 95.4% .
PointFlow [50] 93.7% 0.0 0z a4 (3 08 1.0 a0 0z 0.4 0.6 0.8 1.0 1073 102 107 100
Ours 93.7% Missing Point Ratio Added Point Ratio Standard Deviation for Adding Noise

[1] Jianwen Xie *, Yifei Xu *, Zilong Zheng, Song-Chun Zhu, Ying Nian Wu. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and
Classification. CVPR 2021
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Energy-Based Continuous Inverse Optimal Control

1 I
Po(x) = -explfy(] = -

Energy-Based Model Inverse Optimal Control
i Use cost function as the energy function in EBM probability distribution of trajectories;
* Perform conditional sampling as optimal control;
* Take advantage of known dynamic function and do back-propagation through time;
* Define joint distribution for multi-agent trajectory predictions.
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Energy-Based Continuous Inverse Optimal Control

* Optimal Control: finite horizon control problem for discrete time t € {1, ...,T}.

states X = (xt, t=1,.., T) {longitude, latitude, speed, heading angle, acceleration, steering angle}

controlu = (u;,t = 1,..,T) {change of acceleration, change of steering angle}

The dynamics is deterministic, x; = f(x;_1,u;), where f is given.

The environment condition is e.

1

2

3

4. Thetrajectoryis (x,u) = (xs,ugt = 1,...,7T).
5

6. Therecent history h = (x;, us, t = —k, ..., 0)

7

The cost function is Cy (X, u, e, h) where 0 are parameters that define the cost function

* The problem of inverse optimal control is to learn 8 from expert demonstrations

D = {(Xi,ui,ei,hi),i = 1, ...,Tl}.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

Energy-Based Model for Inverse Optimal Control:

1
po(ulfe h)= M exp [—CB(X, u, e, h)]

where Zy(e,h) = /exp [—Cy(x,u,e, h)] du is the normalizing constant.

* Xxis determined by u according to the deterministic dynamics.
* The cost function Cy (X, u, e, h) serves as the energy function.

For expert demonstrations D, u; are assumed to be random samples from pgy (ule, h), so that u; tends to

have low cost Cy(Xx,u, e, h).

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

Parameters 6 can be learned via MLE from expert demonstrations D = {(x;,u;,e;, h;),i = 1, ...,n}

1 n
The loglikelihood  L(f) = - E log pg (u; | €, h;)
i=1

1 & %) 0
The gradient L'(0) = E;[Epﬂ(ulei:hi) (%Cﬁ? (x,u, €i7hz‘)) —%Cﬂ (Xi:uiaeivhi)]
= 25 [ 0 s e B — 2O w6
L (9) — n ; |:8909 (Xhuzaezahz) 8909 (Xzauzvezahz)

(X;,U;) can be either sampled through Langevin dynamics or predicted through optimization method (that is, seek

the minimum cost). During sampling, the trajectory will be roll-out every step by dynamic function and perform back-

propagation through time.
[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and

Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

Dataset: NGSIM-US101
* Collected from camera on US101 highway.
* 10 frame as history and 40 frames to predict. (0.1s / frame)

* 831 total scenes with 96,512 5-second vehicle trajectories.

100 10.0 100 10.0
75 75 75 75
50 50 50 5.0
25 . 25 25 25 '
00 ® 00 * 00 00
25 © 25 : -25 [ ] -25 C
-0 50 S0 S0
=15 =15 =15 =15
e a0 20 [) P 4 & e 0 -0 [) P 0 & 0 1o [} 0 20 EY R T e N . DL
. . . .
m Ground Truth; = EBM; = GAIL; ; m Lane.

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Energy-Based Continuous Inverse Optimal Control

Multi-Agent Prediction
There are K agents: States X = (xk,k =1,2, ...,K), and controls U = (uk,k =12,..,K)

All agents share the same dynamic function, xf = f(x¥_,,ul).

The overall cost function Cg(X,U, e, h) = YX_, Co(x¥,u¥, e, h*)

po(U | e, h) = 7 o Ty &P [—Cy(X, U, e, h)]
o(e, h)
10 10
s
. . i : 5 o
.
’ LI = ‘! o T N s — . - L . . g
. o o
. L f ] - - id .
L L] ® s e F .
5 Fl L] . L
- ’ Te O OV e < . 1] 5 J .
. . H
10 K - i, . = b " ] e o . % e 8
- F -10
~ s J *ee - . * - * . te . [ ] H
=15 -15 15 -15
80 100 120 140 40 60 80 100 120 140 160 180 40 60 80 100 120 140 160 180

120 140 160 180 200 220 240 260 a0 60

Multi-agent prediction on NGSIM US101 dataset (Grey: Lane ; Red: Ground truth ; Green: Prediction )

[1] Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao, and Ying Nian Wu. Energy-based continuous inverse optimal control. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) 2022
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Part 3: Deep Energy-Based Cooperative Learning

1. Background 4. Deep Energy-Based Models in Latent Space
2. Deep Energy-Based Models in Data Space

3. Deep Energy-Based Cooperative Learning

Generator Model as a Deep Latent Variable Model

. Maximum Likelihood Learning of Generator Model
Two Generative Models: EBM vs. LVM

. Cooperative Learning via MCMC Teaching
Cooperative Conditional Learning

. Cycle-Consistent Cooperative Network
Generative Cooperative Saliency Prediction

. Cooperative Learning via Variational MCMC Teaching

Cooperative Learning of EBM and Normalizing Flow
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Generator Model as a Deep Latent Variable Model

z~N(0,1)
x=gq,(2)+e€

x: high-dimensional example;

z: low-dimensional latent vector (thought vector, code), follows a simple prior

* g:generation, decoder

€: additive Gaussian white noise

Manifold principle: high-dimensional data lie close to a low-dimensional manifold

Embedding: linear interpolation and simple arithmetic
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Generator Model as a Deep Latent Variable Model

Model z N(O,I)
r = ga(z)+€

Conditional Qa($|z) =N (ga (Z), 0'21)

Joint qa(w7 Z) . q(z)qa(w|z)
log da(®,2) = — =5 |12 = ga(2)I% = <[|2|1? + constant
qua .’B,Z . 202 £ ga Z 2 Z coIrstan
Marginal G () :/qa(m,z)dz
Posterior Qa(z|$) . qa(z,w)/qa(af:)
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Maximum Likelihood Learning of Generator Model

1 mn
Log-likelihood (o) = N Z log qo (;)

Gradient Valogqs(z) VaQa( )

1
qa ()
1
= V /qa(ac z)
qu )
— /qa(ac 2)Valogqa(z, 2)dz

QQ(x)

= 9a(2, 2) o) x,z)dz
—f () Valog ga(z, z)d

N /Qa(z|$)voz log go (2, 2)dz

e Eqa(zkc) [voc log Q(mﬁ Z)]

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Maximum Likelihood Learning of Generator Model

1 mn
Log-likelihood (o) = N Z log qo (;)
1=1

Gradient Valogqa(x) = Ky, (z|2) Valogqa(z, 2)]

e |

Langevin inference
1 s 1
Zeyar = 2 + %Vz 10g qo (2t|) + VAtey log ga(®,2) = =55 llz — 9o ()" — §||Z||2 + constant
1 1
V. logga(z|x) = = (2 — 9a(2)) Viga(2) — 2 Valogga(x,z) = = (2 — ga(2)) Vaga(2)

[1] Tian Han*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. Alternating Back-Propagation for Generator Network. AAAI 2016.
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Two Generative Models: EBM vs. LVM

Top-down mapping Bottom-up mapping
hidden vector z energy — fo(x)
Y fr
example x =~ g,(2) example x
(a) Generator model (b) Energy-based model

Energy-based model

. Bottom-up network; scalar function, objective/cost/value, critic/teacher

. Easy to specify, hard to sample

. Strong approximation to data density

Generator model

. Top-down network; vector-valued function, sampler/policy, actor/student
. Direct ancestral sampling, implicit marginal density

. Manifold principle (dimension reduction), plus Gaussian white noise

. May not approximate data density as well as EBM
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Two Generative Models: EBM vs. LVM

D2 updating

)

EBM density: explicit, unnormalized D1 Langevin

o= et

Generator density: implicit integral G2 updating

— {inferred latent factors |
o (.’L‘) — /q(z)qa(w|z)d’z G1 Langevin l

( observed examples ]
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Cooperative Learning via MCMC Teaching

Cooperative learning algorithm

EBM pg Generator q,

*  Generator is student, EBM is teacher

* Generator generates initial draft, EBM refines it by Langevin

*  EBM learns from data as usual

*  Generator learns from EBM revision with known z: MCMC teaching

*  Generator amortizes EBM’s MCMC and jumpstarts EBM’s MCMC

*  EMB’s MCMC refinement serves as temporal difference teaching of generator
*  Generator can provide unlimited number of examples for EBM,

* Vs GAN: an extra refinement process guided by EBM

6
G2 updating

Generator

(5)

[ observed examples Ji

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Cooperative Learning via MCMC Teaching

Basic idea of MCMC teaching

Ly
N>

EBM pg(x) Generator q,(x)

* Double line arrows indicate generation and reconstruction in the generator network
* Dashed line arrows indicate Langevin dynamics for revision and inference in the two models.

* The diagram on the left illustrates a more rigorous method, where we initialize the Langevin inference of {Z;} in Langevin
inference from {Z;}, and then update «a based on {Z;, X;}.

* The diagram on the right shows how the two nets jumpstart each other’s MCMC without Langevin inference.

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Cooperative Learning via MCMC Teaching

Theoretical understanding

g Markov M ection
transitio

Learning EBM by modified contrastive divergence DKL (pdataHpQ) . ID)KL (Mg(t) 4o t) ||p9)

Learning generator by MCMC teaching Dx1, (Mg(t) Qo) ||Qa)

[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018
[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Cooperative Learning via MCMC Teaching

Image synthesis

-—

tion by the learned generator '

mterbola

image inpainting

T ;
WL A,
scene synthesis
[1] Jianwen Xie, Yang Lu, Ruigi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Descriptor and Generator Networks. TPAMI 2018

[2] Jianwen Xie, Yang Lu, Ruigi Gao, Ying Nian Wu. Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching. AAAI 2018
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Cooperative Conditional Learning

Conditional Learning as Problem Solving

* Let x be the D-dimensional output signal of the target domain, and ¢ be the input signal of the source
domain, where “c” stands for “condition”. ¢ defines the problem, and x is the solution.

* The goal is to learn the conditional distribution p(x |c) of the target signal (solution) x given the source
signal ¢ (problem) as the condition. p(x |c) will learn from the training dataset of the pairs {(x;,c;),
i =1,..,n}

* Examples:c = x

«-8 5%
222 A2

Label-to-image synthesis Image inpainting Image-to-image synthesis
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Cooperative Conditional Learning

The cooperative learning scheme is extended to the conditional learning problem by jointly training a
conditional energy-based model and a conditional generator model.

They represent (problem c, solution x) pair from two different perspectives:

1
* The conditional energy-based model is of the following form  py(x|c) = m exp|fo(z,c)]
b
solve a problem via slow-thinking (iterative): g, \, = 2, + %Vmﬁ? (21, ¢) + V Atey

«  The conditional generator is of the following form = = ga(2,¢) + €,z ~ N(0,13), e ~ N(0,0%Ip)

solve a problem via fast-thinking (non-iterative): & = g (2, €)

Fast-thinking v.s. Slow-thinking

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Cooperative Conditional Learning

fast-thinking initializer . gy C ) model
5 E ----Y.---_ - data
>~ N(O’ I);x =ga(z,¢) + €€~ N(O, o°l) @ (—: initial solution | S
£ ] I synthesis
c - g
slow-thinking solver E 5 —> learning
=
1 @ s°|Vey|® @ : ----- > sampling
po(xlc) = Z(c, 0) exp|fo(z, c)] ! refined solutlon-'——> % g -
Y e e 0
At VA ‘observed solution —— §
Ti+At = Tt + 7V zfo(xe,c) + V Atey .

Diagram of fast thinking and slow thinking conditional learning

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Cooperative Conditional Learning

Label-to-Image Generation

0/ 234%#5678 9 £, 0)
Ol A3UL 56 98¢ e [T R 0,0
8/ A2 Y4Y567%7
o|l23y5067%92
Ol 23«95 6758Qq
O0(234936727174
Ol 213 4s5bk7 ¢35
O/a3 ¥60b3 99
0123456709
ClId>4£S 786 2 =g(z, ¢ )
Image generation conditioned on class label

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Cooperative Conditional Learning

Image-to-Image Generation f(Y,C;6) C (condition image)

condition ground truth pix2pix c¢VAE-GAN cVAE-GAN++ BicycleGAN initializer (ours) solver (ours)

condition

skip connection

initializer  GT

condition ground truth ix2pi cVAE-GAN cVAE-GAN++ BicyclcGAN initializer (ours) solver (ours)
e —

MO A ¥ (X, 2O
8 H zlala Y = g(X,C;a)

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Cycle-Consistent Cooperative Network

Unsupervised Image-to-Image Translation

®* Image-to-image translation has shown its importance in computer vision and computer graphics.

®* Unsupervised cross-domain translation is more applicable than supervised cross-domain
translation, because different domains of independent data collections are easily accessible.

Cezanne
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Cycle-Consistent Cooperative Network

* Twodomians{x;; i=1,..,n,} € X and {yi;i =1, ...,ny} € Y without instance-level correspondence

* Cycle-Consistent Cooperative Network (CycleCoopNets) simultaneously learn and align two EBM-generator pairs

1
Y= X p(:0x),Gyor(y; ax)} p(x;bx) = 702 P [/ (;02)] po()
Y2 Y piby), Gaoy(zon)} p(i6y) = 5= w1 (50 (0

where each pair of models is trained via MCMC teaching to form a one-way translation. We align them by
enforcing mutual invertibility, i.e.,

r; = Gy x (Gxoy (Tiay) s ax)

yi = Gxoy (Gysx (Yisax) ;o)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

p(x) p®)
—— true distribution === MCMC/Langevin
=== EBM update === LVM update )
= LVMindomain x = LVMindomainy
= EBM in domain x ——— EBMin domainy i
X translated example in domain x o translated example in domain y u -
X observed example in domain x o observed example in domain y

Step (1): cross-domain mapping

{2 ~ Pdata () Y1y {81 = Gy (zi;a)} 1,
{yi ~ paata W) }izy {8 = Gy (Wisax)

Starting from {g}i}?zl ,run [ steps of Langevin revision to obtain {gi}?’:l

Starting from {:&@-}?:1 ,run [ steps of Langevin revision to obtain {iﬁi}?’:l

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

—— true distribution === MCMC/Langevin p(x) P(®)
=== EBM update === LVM update
=3 LVMin domain x ==p LVMin domainy @
= EBM in domain x EBM in domain y
X translated example in domain x o translated example in domain y > x
X observed example in domain x o observed example in domain y

Step (2): density shifting
Given {z}!, and {7}/, update QSEH) = 92_3) + 70, A (93’:‘))

Given {y}, and {7}, update BS‘H) = Hg}t) + 76, A (HS))

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Alternating MCMC Teaching

——— true distribution === MCMC/Langevin P() PO)
===p EBM update === LVM update o,
=3 LVMin domain x ==p LVMin domainy
——— EBMin domain x EBM in domain y 3) Yi ¥i/¥i
X translated example in domain x o translated example in domain y G, > x B L ﬂ‘ i
X observed example in domain x o observed example in domain y A = _’}:’ —» ]
by—x ) Groy

Step (3): mapping shifting with cycle consistency

mn

N 9

Licach (ax) = E |Zi — Gy x (yi, ax)||
o]

Lieach (0537) - Z ||g’b - GX—>37 (miaay)HQ

1=1

2
Leyae (0x,ay) = Y [[2i = Gyox (Groy (wioy)sax)|* + D [y — Gasy (Gysx (yisax) s ay))|
i—1 i=1

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Unsupervised Image-to-Image Translation

Original Monet gl Cezanne Ukiyo-¢
Y R E r .

¥,

e e S IR T T e R winter = summer
Collection style transfer from photo realistic images to artistic styles Season transfer

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Unsupervised Sequence-to-Sequence Translation

Jianwen Xie

The CycleCoopNets framework can be generalized to learning a translation between two domains of
sequences where paired examples are unavailable.

For example, given an image sequence of Donald Trump's speech, we can translate it to an image
sequence of Barack Obama, where the content of Donald Trump is transferred to Barack Obama but

the speech is in Donald Trump's style.

Such an appearance translation and motion style preservation framework may have a wide range of
applications in video manipulation.

L — / y — 4 —~ - § — / - Z ~
; iy 8y BN | P BN | g SN0 S LA R A | A
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Cycle-Consistent Cooperative Network

Unsupervised Sequence-to-Sequence Translation
Two medications are made to adapt the CycleCoopNets to image sequence translation.

(1) learn a recurrent model in each domain to predict future image frame given the past image frames in a

sequence. Let R, and Ry denote recurrent models for domain X and Y respectively. We learn R, and Ry by
minimizing

Lyec (Rx) Z |Ti4kt1 — R (Tg4k) H

Lyec (Ry) = Z lyerirs — Ry Weern) |l

t

where Ltttk — (IL‘t, ...,$t+k) and Yt:t+k = (yta -'-ayt—l—k)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021

Jianwen Xie
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Cycle-Consistent Cooperative Network

Unsupervised Sequence-to-Sequence Translation
(2) With the recurrent models, we modify the loss for G to take into account spatial-temporal information
Ly (Gx%y, Rya Gy%x)
= ekt — Gyox (Ry (Groy (@)
t

Ly (Gyx, Rx,Gxy)
= Z [yt4r41 — Gy (Bx (Gyx (?Jt:t+k)))||2
t

The final objective of G and R is given by

minG,R L(Ga R) — Lrec (RA:') + Lrec (Ry) + AlLtea.ch (Gy—>2()
+A1Lteach (Gx—y) + AoLg (Gxy, Ry, Gy x)
+A2 Lt (Gy—x, Rx,Gxy)

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Cycle-Consistent Cooperative Network

Input

Image sequence translation

Output

(a) translate Barack Obama’s facial

% g V) ¢ ‘” 2 Oy, | motion to Donald Trump.
v %% |59 |58 |38 (18
; ‘ - (b) translate from the blooming of a violet
fl [ 4 A

L) P R L (c) translate the blooming of a purple

4 \ [\ i

(c) purple flower to red flower

(a) Barack Obama to Donald Trump

Input

Output

Input

Output

[1] Jianwen Xie *, Zilong Zheng *, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-
Domain Translation. AAAI 2021
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Generative Cooperative Saliency Prediction

® Saliency prediction aims at highlighting salient object regions in images.

RGB image (input)

”g Ia

® Salient object detection can be useful for a wide range of object-level applications.

®* Existing salient object detection methods mainly focus on supervised learning.

®* Most existing supervised learning methods seek to learn deterministic mapping between image and Saliency.

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Generative Cooperative Saliency Prediction

Generative saliency prediction aims at learning a distribution of saliency Y given an image X, i.e., p(Y|X),
and performs saliency prediction via sampling Y from the learned distribution, i.e., Y ~ p(Y|X).

* The cooperative saliency prediction (Sa/CoopNets) consists of an energy-based model serving as a fine but
slow predictor and a latent variable model serving as a coarse but fast predictor.

®* The energy-based model and the latent variable model are jointly trained by cooperative learning
algorithm.

* The cooperative prediction is performed by a coarse-to-fine sampling.

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022
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Generative Cooperative Saliency Prediction

(1) Energy-based model serving as a fine but slow predictor

Training data: {(XG, Y5 Hey (X isanimage, and Y is a saliency map.)

. pg(Y,X) o 1
- [pe(Y,X)dY  Z(X;0)

po(Y | X) exp [-Uy(Y, X)]

The energy function Uy (Y, X) parameterized by a bottom-up neural network plays the role of a trainable objective
function in the task of saliency prediction.

When the Uy (X,Y) is learned and an image X is given, the prediction of saliency Y can be achieved by
Langevin sampling Y ~ pg (Y|X)

52 8U, (Y;, X
}QH:Y},——G(—t)

2 oY +5AtJAtNN(OJID)

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022
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Generative Cooperative Saliency Prediction

(2) Laten variable model serving as a coarse but fast predictor

Training data: {(X..Y:)} (X is animage, Y is a saliency map, and Z is latent variables)
Z ~N(0,14),Y = Go(X,Z) + €6,e ~ N (0,0%Ip)

which defines an implicit conditional distribution of saliency Y given an image X, i.e., p(Y|X) =
[0, (Y|X,Z)dZ, where p, (Y|X,Z) = N (G (X, Z), a°1p).

The saliency prediction can be achieved by an ancestral sampling that first samples an injected Gaussian white
noise Z and then maps the noise and the image X to the saliency Y.

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022
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Generative Cooperative Saliency Prediction

Saliency prediction by ancestral Langevin sampling

Langevin Sampler iterative slow Negative energy function

Ancestral Sampler Non-iterative fast No value function

Ancestral Sampler (fast thinking initializer) + Langevin Sampler (slow thinking solver)

[1] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, Ying Nian Wu. Cooperative Training of Fast Thinking Initializer and Slow Thinking Solver for Conditional Learning. TPAMI 2021
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Generative Cooperative Saliency Prediction

Cooperative Training of two predictors: Iterate steps (1) (2) and (3)

(1) Ancestral Langevin sampling
Z ~N(0,1a),Yo = Ga(X,Z) + €, ~ N (0,0%Ip)

62 Uy (Y, X
Vi1 =Y - 2o e X)

2 57 +3A, Ay~ N(0,Ip);t=0,1,....T

(2) Langevin sampler learns from  {(X;,Y;)}iy  L(0) = 1 Zlog?Jg(l’HXﬁ)
n &

o 1”8

Y; ~ po (Y]X;) A0 0D GpUe(VaXo) = 1 37 FpUn(¥i X)
1« -
(3) Ancestral sampler learns from - { (X, Y) z—l L(0) = " X;Inga(h\Xi)
N - 1< 1 - e =
Zi ~ pa(Z|Yi, X;) Ao~ =3 —(Y Gal(Zi, Xi))5-Ga(Zi, Xi)
i=1

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022
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Generative Cooperative Saliency Prediction

Given an image, we can sample different saliency maps with the learned model SalCoopNet: pgo(Y|X), pe (Y |X).

Our Samples

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022
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Generative Cooperative Saliency Prediction

Performance comparison with baseline saliency prediction models

DUTS [57] ECSSD [56] DUT [57] HKU-IS [22] THUR [2] SOC [3]
Method Sa TFgTETMUSa TFs TEc T MUSa TFg TE: T MU Sa TFg TEe TM [|Sa TFg T E¢ tM USa TFg TE: T M|
Deep Fully Supervised Models
DGRL [35] |.846 .790 .887 .051|.902 .898 .934 .045|.809 .726 .845 .063|.897 .884 939 .037|.816 .727 .838 .077|.791 .348 .820 .137
PiCAN [25] |.B42 .757 853 .062(.898 .872 .909 .054|.817 .711 .823 .072|.895 .854 910 .046|.818 .710 .821 .084|.801 .332 .810 .133
F3Net [42] |.888 .852 .920 .035(.919 .921 .943 .036|.839 .766 .864 .053|.917 910 .952 .028|.838 .761 .858 .066|.828 .340 .846 .098
NLDF [27] |.816 .757 .851 .065|.870 .871 .896 .066|.770 .683 .798 .080(.879 .871 .914 .048|.801 .711 .827 .081|.816 .319 .837 .106
PoolN [24] |.887 .840 .910 .037(.919 .913 .938 .038|.831 .748 .848 .054|.919 .903 .945 .030|.834 .745 .850 .070|.829 .355 .846 .098
BASN [33] |.876 .823 896 .048(.910 913 938 .040|.836 .767 .865 .057|.909 903 .943 .032|.823 .737 .841 .073|.841 .359 .864 .092
AFNet [0] .867 .812 .893 .046|.907 901 .929 .045|.826 .743 .846 .057|.905 .888 .934 .036(.825 .733 .840 .072|.700 .312 .684 .115
MSNet [44] |.862 792 883 .049|.905 .886 .922 .048|.809 .710 .831 .064|.907 .878 .930 .039|.819 .718 .829 .079| - - - -
SCRN [46] |[.885 .833 .900 .040|.920 910 .933 .041|.837 .749 .847 .056|.916 .894 935 .034|.845 .758 .858 .066|.838 .363 .859 .099
ITSD [66] .885 .840 913 .041|.919 917 .941 .037|.840 .768 .865 .061|.917 904 947 .031|.836 .753 .852 .070|.773 .361 .792 .166
LDF [42] 892 .861 .925 .034|.919 923 943 .036|.839 .770 .865 .052|.920 .913 953 .028|.842 .768 .863 .064|.835 .369 .856 .103
SalCoopNets| .890 .856 .924 .034(.926 .930 .954 .031|.852 .788 .879 .046|.923 .917 .957 .026|.847 .771 .867 .061|.839 .368 .860 .092
Weakly Supervised Models
SSAL [62] |[.803 .747 865 .062|.863 .865 .908 .061|.785 .702 .835 .068|.865 .858 .923 .047|.800 .718 .837 .077|.804 .309 .793 .143
NED [61] 796 732 .829 .067|.852 .849 .871 .071|.782 .694 .810 .074|.861 .852 .904 .048(.800 .713 .830 .079|.783 .300 .791 .153
SalCoopNets| .813 .755 .863 .059(.872 .874 .910 .060|.791 .707 .840 .061|.871 .859 .929 .042|.804 .717 .839 .074|.812 .314 .806 .137
Alternative Generator Models
CVAE .866 .824 .900 .041|.906 910 .932 .043|.816 .737 .844 .055|.910 .903 .943 .032|.835 .755 .859 .065|.843 .361 .866 .098
CGAN .846 785 .883 .049|.900 .895 .928 .047|.799 .705 .828 .063|.894 .875 .930 .039(.823 .732 .850 .071|.841 .362 .859 .103

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022

Jianwen Xie
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Generative Cooperative Saliency Prediction

Weakly-Supervised Saliency Prediction

X:inputimage fully annotated GT Y, compiete: scribble GT

A weakly supervised setting: Learn predictors from (X,Y), where Y is a scribble (incomplete) ground truth

We made a small modification on the current algorithm to adapt it to this task.

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Generative Cooperative Saliency Prediction

For each iteration, we Add the following two steps to recover the scribble training data Y
(1) Recovery by the latent variable model

(infer latent variables of the scribble data, and then recover the missing region by mapping the inferred latent
variable back to the saliency domain)

Z ~ Pot) (Z‘ancomplete 3 X)
I 5ver = Ga(” (Z: X)

(2) Recovery by the energy-based model

(starting from initially recovered Y, ecover Provided by the latent variable model)

2
thJrl — }/t - 7 +5At;At et N(O; ID) ;YO _ Yvrecoven

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022
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Generative Cooperative Saliency Prediction

Results of the weakly-supervised saliency prediction by the SalCoopNets

2 %212
KNI N
= =t |—¢]—¢

Scribble GT Recovered GT Image GT Our Samples Ours

(a) Training Process (b) Testing Process

1
A »

[1] Jing Zhang, Jianwen Xie, Zilong Zheng, Nick Barnes. Energy-Based Generative Cooperative Saliency Prediction. AAAI 2022
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Cooperative Learning via Variational MCMC Teaching

To retrieve the latent variable of {X;} generated by EBM in the cooperative learning, a tractable
approximate inference network mg(z|x) can be used to infer {Z;} instead of using MCMC

inference. Then the learning of mz(z|x) and q,(x|z) forms a VAE that treats the refined

synthesized examples {X;} as training examples.

Variational MCMC teaching of the inference and generator networks is a minimization of

variational lower bound of the negative log likelihood

(o, B) = Z log ga (Z:) — YDkL (75 (2i]Z4) ||qa (2i]24))]

1=1

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021

Jianwen Xie
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Cooperative Learning via Variational MCMC Teaching

. a® 3

. P > Zi s Zj fl
Il
Il

a(t) a(t+1) a(t) a(t) B(t) Il a(t+1)
Il
Il
Il
---------- > o A -__--__---);v

Y v X

Xi g X l Xi g i

(@) MCMC teaching (b) fast MCMC teaching (¢) variational MCMC teaching

[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Cooperative Learning via Variational MCMC Teaching

Image synthesis
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[1] Jianwen Xie, Zilong Zheng, Ping Li. Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler. AAAI 2021
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Cooperative Learning of EBM and Normalizing Flow

Normalizing flow T = ga(2); 2~ qo(2)

qo IS a known Gaussian noise distribution. g, is an invertible transformations where the log determinants of
the Jacobians of the transformations can be explicitly obtained.

Under the change of variables, distribution of x can be expressed as

da(x) = qo(2) detgac(9)

Ga(2) = qo(g ' (2))| det(9g5 ™ (x)/0))]

Ja 1S composed of a sequence of transformations g, = ga1 * 9az--- 9am » therefore, we have

Ga(x) = qo(g " (2))I}2, | det(Ohi—1 /Ohy)|

[1] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. NIPS 2018
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Cooperative Learning of EBM and Normalizing Flow

x=ga(2); 2~ qo(z)

() = qo(ggl(x))l__[?lﬂ det(Oh;_1/0h;)| In general, it is intractable !!

The key idea of the flow-based model is to choose transformations g whose Jacobian is a triangle
matrix, so that the computation of determinant becomes

|det(8h,_1/8hz)\ = H]dlag(é)h@_l/c‘)hz)]

diag() takes the diagonal of the Jacobian matrix

Maximum likelihood estimation of ¢ |min, KL(pgatal/¢a)

[1] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. NIPS 2018
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Cooperative Learning of EBM and Normalizing Flow

The CoopFlow Algorithm
At each iteration, we perform

(Step 1) For i = 1,..., m, we first generate z; ~ N(0, Ip), and then
transform z; by a normalizing flow to obtain % = g.(z).

(Step 2) Starting from each X;, we run a Langevin flow (i.e., a finite
number of Langevin steps toward an EBM py(x)) to obtain X;.

(Step 3) We update « of the normalizing flow by treating X; as training
data.

(Step 4) We update 6 of the Langevin flow according to the learning
gradient of the EBM, which is computed with the synthesized examples
X; and the observed examples.

[1] Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li. A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model. ICLR 2022
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Cooperative Learning of EBM and Normalizing Flow

Image synthesis
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Generated examples (32 x 32 pixels) by CoopFlow models trained from CIFAR-10, SVHN and Celeba datasets respectively.

[1] Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li. A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model. ICLR 2022
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Part 4: Deep Energy-Based Models in Latent Space

Background
Deep Energy-Based Models in Data Space

Deep Energy-Based Cooperative Learning

b=

Deep Energy-Based Models in Latent Space
Latent Space Energy-Based Prior Model
. Learning by Maximum Likelihood
Prior and Posterior Sampling
. Learning and Sampling Algorithm of Latent Space EBM
Conditional Latent Space EBM for Saliency Prediction
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Latent Space Energy-Based Prior Model

x: observed example (e.g., an image); z: latent vector.

po(x,2) = pa(2)ps(z|2)

foet (2)

Pal) = 77 X0 (a2l 7 i 95(2)
r=gp(z) +¢€

* EBM p,(2) defined on latent space z, standing on a top-down generator.
* Exponential tilting of py(2), po is non-informative isotropic Gaussian or uniform prior.
* Empirical Bayes: learning prior from data, latent space modeling.

* Learning regularities and rules in latent space.

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Learning by Maximum Likelihood

Log-likelihood  L(9) = Zlogpe (2:) let 0 = (o, B)

= log :/pe (wa;,zi)dZ] 1}

- Zlog _fpa (2) pg (2 | Zz')dz] yA
] § 95()
Pale) = g @ Ual@Ipoa)  pp(w | 2) = N (g5(2), o) x

Gradient for a training example

Ve logpe(z) = Epg(z|:c) [Vglogpe(z, z)]
- Eps(zlm) [Vﬂ (log pa(2) + log pg (2 | Z))]
= Epp(z)x) [Vologpa(2)] + Ep,(z1z) [Vo logps(@ | 2)]

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Learning by Maximum Likelihood

* Learning EBM prior: matching prior and aggregated posterior
fa(2)
5a(@) = Vo log po() ;
= Lpg(2z]x) [vafa(z)] - Epa(Z) [Vozfa(z)] l g (Z)
B
* Learning generator: reconstruction 9

65(x) = Vg log pe(z)
= Epy(212) [V log pg(x|z)]

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Prior and Posterior Sampling

(1) Sampling from prior via Langevin dynamics {Z;} ~ pa(2) o exp(—Ua(2))
1

202

St41 — Rt — 5sza(Zt) + \/%Et, <0 NPO(Z);Et ~ N(O:I)v

Let U,(z) = —fa(z) + [EllR

(2) Sampling from posterior via Langevin dynamics {z:'} ~ Do (2: | x)

po(z | @) = po(x,2)/po() = pa(2)Ps(2 | 2)/po(z)

) ; )
21 =2 — 0 |VoUn(2) — = (@ — 95 (2)) Vogp (2¢) | + \/%et, 20 ~ po(2), e ~ N(0,1)
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Learning and Sampling Algorithm of Latent Space EBM

fort=0:7T—1do

1. Mini-batch: Sample observed examples {x; } ;.

2. Prior sampling: For each z;, sample z; ~ pq,(2) by Langevin sampling from target distribution
m(2) = pa,(2), and s = so, K = Ko.

3. Posterior sampling: For each x;, sample z,j' ~ Do, (z|x;) by Langevin sampling from target
distribution 7(z) = pe, (2|xi), and s = s1, K = K.

4. Learning prior model: a1 = oz + 1m0~ > 1w [Vafa: (27) — Vafa, (27)]

5. Learning generation model: 3:11 = 8: + mi— >, Vg logpg, (z:|2).

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Learning and Sampling Algorithm Latent Space EBM

Image Generation

[1] Bo Pang*, Tian Han*, Erik Nijkamp*, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. NeurlIPS, 2020
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Conditional Latent Space EBM for Saliency Prediction

Saliency Prediction

Ia

(1) aconvolutional encoder-decoder for saliency map generation

(2) aloss function to guide the encoder-decoder for parameter updating

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Conditional Latent Space EBM for Saliency Prediction

Saliency Prediction

1. Encoder-decoder structure: the convolution operation makes the model less effective in modeling the
global contrast, which is essential for salient object detection.

Solution: vision transformer with self-attention (e.g., Swin)

2. The conventional deterministic one-to-one mapping mechanism makes the current framework
impossible to estimate the pixel-wise confidence of model prediction or learn from incomplete data.

Solution: generative modeling of saliency prediction (e.g., latent space energy-based prior model)

Jianwen Xie ECCV 2022 Tutorial on Deep Energy-Based Learning in Computer Vision



Conditional Latent Space EBM for Saliency Prediction

Generative Transformer with Energy-based Prior

Transformer Encoder __________
I: input image. z: latent vector. S: saliency map /—;?\‘
[Hh—fo—fs— =D sgregaion [To(L2)
___________________________ lz
Transformer S — TQ (I, Z) —|— €
EBM prior

2opalz)  pala) = o ep(fa()p(a

2
Residual noise €~ N(O, o ID)

EBM defined on z, standing on a latent space of the transformer.

Exponential tilting of py(2), po(2) is non-informative isotropic Gaussian
Empirical Bayes: learning prior from data

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
Jianwen Xie
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Conditional Latent Space EBM for Saliency Prediction

Training data {(Si,li),i =1, ;n} letﬁ — (9305) T (I ) +
S =dg\L,2 €

Maximum Likelihood  L(j3) = Zlogpﬁ(siﬂ?;) 2~ pa(z)

- Zlog {/Pﬁ siy zi|L; )dz] e ~ N(0, J2ID)

- ilog [/Pa(zi)m(silli,zi)dz}

Pa(2) = Z(la) exp(fa(2))po(2) p9(8|17 Z) — N(T9 (Ia Z): JZID)

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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Conditional Latent Space EBM for Saliency Prediction

Log-likelihood let 5 = (9, Of) S = TO (I, z) + €

L(B) = Zlogpﬁ(siﬂi) Z ~ Pa(2)
- e ~N(0,0°Ip)

Gradient for a training example

Vilogps(s|l) = Ep,zs0) [V logps(s. z[1)]

— EpB(ZIS,I) [Vg(logpa (Z) + 10gp9(5|la Z))]

=E,,z1s.0[Valogpa(2)] T By, 2151 Ve log pg (s|L, 2)]
(1) (2)

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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vﬁ 10gPB(S|I) — Epg(z|s,l) [va logpa(z)] + Epg(z|s,l) [VB 10gp9(8|17 Z)]
(1) (2)

(1) Epﬁ(z|s I) [v logpa(z)] pﬁ(z|s I [ afa(z)] - Epa(z) [vo:fa(z)]

sampling from posterior ~ sampling from prior

pa(2) = 7 xPUa(2)p0(:)

1
(@) Epsatsn[Vologpo(sl.2)] = By iz | 5 (s = To(L.2)) Vo To(L 2)

sampling from posterlor
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(1) Sampling from prior via Langevin dynamics
{27} ~ pal2) cexp(-Ua(2)) 1ot Ua(s) = ~fal) + 551211

zia1 =2 — OV, Uy (2¢) + V20¢€,, zp ~ po(z), € ~ N(0,1), (@)
(2) Sampling from posterior via Langevin dynamics

{7} ~ps(2ls,I)  ps(ls, 1) = ps(s, 2[0)/ps(s|l) = pal2)pe(s|L, 2) /ps(s|T)

1
24401 =2t — 0 [VzUa(z) - (s =To(1,2)) V., Tp (I, 2¢)| + V20e, 2o ~ po(z), e ~ N(0,1) (b)
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At each iteration, for each (Sl-,ll-)

* Sample s=Ty(I,2) + ¢
_ 2~ z
{27} ~ pa(elsi, i) {2 } ~ Pa(?) Pa(2)
€ NN(O,O'QID)
* Update
= 1 &
VO&Z—Z[ afa 7; EZ afa Z;
1=1 1=1
W:lili( — Ty(L;, 2)) Ve Ty (L, ; )]
ni_l o2 (] 19 ~5 s
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Algorithm 1 Maximum likelihood learning algorithm for generative vision transformer with energy-
based latent space for saliency prediction

Input: (1) Training images {I;}; with associated saliency maps {s;}'; (2) Maximal number of learning
iterations M ; (3) Numbers of Langevin steps for prior and posterior { Ko, K }; (4) Langevin step sizes for prior
and posterior {do, 01 }; (5) Learning rates for energy-based prior model and transformer {£., &0}

Output: Parameters 6 for the transformer and « for the energy-based prior model

I: Initialize 0 and «

2: fort < 1to M do

3: Sample observed image-saliency pairs {(I;, si) }}

4 For each (1, s;), sample the prior z; ~ pa, (z) using Ky Langevin steps in Eq.(7) with a step size dy.

5 For each (I;. s;). sample the posterior z;” ~ pg, (2|s:, I;) using K; Langevin steps in Eq.(8) with a step
size 4.

6 Update energy-based prior by Adam with the gradient Va computed in Eq.(9) and a learning rate &, .

7: Update transformer by Adam with the gradient V# computed in Eq.(10) and a learning rate &g.

8: end for

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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s=Ty(L,z)+ €
2~ Pa(2)
e ~ N(0,0%Ip)

Image GT = Predictions by sampling

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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Table 1: Performance comparison with benchmark RGB salient object detection models.

DUTS [67] ECSSD [79] DUT [80] HKU-IS [38] PASCAL-S [40] SOD (48]
Method  |So 1Fp TEe TM J,sa 1F5 1E¢ 1M S 1Fp 1Ee T M USo 1F3 1E¢ 1M IS 1Fg 1Ee tM J|So 1F5 1Ee TM |
CPD[72] | 869 821 808 013 000 937 040| 825 742 847 056|006 802 038 .034| 848 810 882 071|799 779 811 088
SCRN [73] | .885 .833 .900 1)40 920 910 933 041|837 .749 847 .056|.916 .894 .935 .034|.869 833 892 .063|.817 .790 .829 .087
PoolNet [41]| .887 840 910 .037|.919 913 938 .038|.831 748 .848 .054|.919 903 .945 .030| 865 835 .896 .065|.820 .804 834 .084
BASNet [58]| 876 .823 .896 .048|.910 913 938 .040| 836 .767 .865 .057|.909 903 943 032|838 818 879 .076|.798 .792 .827 .094
EGNet [88] | .878 824 898 .043| 914 906 933 .043|.840 755 855 .054| 917 900 .943 .031|.852 823 881 .074|.824 811 843 .081
F3Net [70] | 888 852 920 .035| 919 921 943 036|839 766 864 053|917 910 952 028 861 835 898 062|824 814 850 077
ITSD [90] | .886 .841 917 .039].920 916 943 .037|.842 .767 867 .056|.921 906 .950 .030|.860 830 .894 .066|.836 .829 .867 .076
Ours 912 .891 .951 .025|.936 .940 .964 .025|.858 .802 .892 .044|.928 .926 .966 .023 | .874 876 .18 .053|.850 .855 .886 .064
Table 2: Performance comparison with benchmark RGB-D salient object detection models.
NJU2K [29] SSB [52] DES [9] NLPR [55] LESD [39] SIP[16]
Method  |So 1F5 1E¢ TM USa 1Fp 1E¢ TM USa 1Fs 1E¢ TM USa 1Fp 1E¢ 1M USa 1Fs 1E¢ TM USa 1F5 1E¢ TM |
BBSNet [17]] 921 902 938 .035| 908 883 928 .041| 933 910 949 .021].930 .896 950 .023| 864 .843 883 .072]| 879 868 906 .055
BiaNet [86] | 915 903 934 .039|.904 879 926 .043| 931 910 .948 021].925 894 948 024|845 834 871 .085|.883 .873 913 052
CoNet [27] | 911 903 944 .036| 896 877 939 .040|.906 880 939 .026|.900 859 937 .030|.842 834 886 .077|.868 .855 915 .054
UCNet [83] | 897 886 930 .043|.903 884 938 .039|.934 919 967 019].920 891 951 .025| 864 855 901 .066|.875 .867 914 051
JLDCE [18] | 902 885 935 .041|.903 873 936 .040|.931 907 959 .021|.925 894 955 .022|.862 848 .894 .070|.880 .873 918 .049
Ours 932 927 .959 .026|.921 905 .953 .030|.947 .940 .979 .014|.938 .922 .966 .019 | .889 .876 .920 .052|.907 .913 .943 .035

[1] Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li. Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction. NeurlPS, 2021
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Visual comparison of saliency predictions by the generative transformer with EBM prior (4" row) and the
current state-of-the-art saliency model (3 row), as well as the ground truths (2" row).

Input images RS N |
= » "ha

ground truths

baseline model
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